国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于雙閾值的ANN-SNN轉換方法優(yōu)化
DOI:
CSTR:
作者:
作者單位:

1.湖南大學(xué) 電氣與信息工程學(xué)院;2.機器人視覺(jué)感知與控制技術(shù)國家工程研究中心

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(62101184),湖南省科技創(chuàng )新領(lǐng)軍人才(2023RC1039),湖南省自然科學(xué)基金重大項目(2021JC0004)


Optimization of ANN-SNN Conversion Method With Double Threshold
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    脈沖神經(jīng)網(wǎng)絡(luò )作為第三代神經(jīng)網(wǎng)絡(luò ),能夠克服許多人工神經(jīng)網(wǎng)絡(luò )中所存在的問(wèn)題,如高功耗、魯棒性較差等。通過(guò)對預訓練好的人工神經(jīng)網(wǎng)絡(luò )模型進(jìn)行轉換是獲取深度脈沖神經(jīng)網(wǎng)絡(luò )模型的一種主要方法,然而通過(guò)這種方法獲取的脈沖神經(jīng)網(wǎng)絡(luò )的延遲較高,無(wú)法滿(mǎn)足實(shí)時(shí)性要求。論文在雙閾值轉換方法的基礎上,采用閾值平衡技術(shù)對轉換過(guò)程進(jìn)行優(yōu)化,通過(guò)理論推導,提出了一種對稱(chēng)閾值LeakyReLU激活函數,并對人工神經(jīng)網(wǎng)絡(luò )到脈沖神經(jīng)網(wǎng)絡(luò )的轉換流程進(jìn)行了梳理。此外,采用了泄漏機制對轉換后的脈沖神經(jīng)網(wǎng)絡(luò )模型結構進(jìn)行了優(yōu)化,并通過(guò)脈沖時(shí)序依賴(lài)可塑性學(xué)習規則對該結構進(jìn)行訓練。最終,在MNIST數據集與CIFAR-10數據集上進(jìn)行了實(shí)驗,結果表明,優(yōu)化后脈沖神經(jīng)網(wǎng)絡(luò )的收斂速度與魯棒性得到了大幅提升。

    Abstract:

    As a third-generation neural network, spiking neural network can overcome many problems in artificial neural networks, such as high power consumption and poor robustness. Transforming the pre-trained artificial neural network model is one of the main methods to obtain the deep spiking neural network model, but the spiking neural network obtained by this method has a high latency and cannot meet the real-time requirements. On the basis of the double threshold conversion method, the threshold balance technology is used to optimize the conversion process, and through theoretical derivation, a symmetric threshold LeakyReLU activation function is proposed, and the conversion process from artificial neural network to spiking neural network is sorted out. In addition, the leakage mechanism is used to optimize the structure of the transformed spiking neural network model, and the structure is trained by the spike-timing-dependent plasticity learning rule. Finally, experiments were carried out on the MNIST dataset and the CIFAR-10 dataset, and the results showed that the convergence speed and robustness of the optimized spiking neural network were greatly improved.

    參考文獻
    相似文獻
    引證文獻
引用本文

何赟澤,張天安,鄧堡元,王洪金,王耀南.基于雙閾值的ANN-SNN轉換方法優(yōu)化計算機測量與控制[J].,2024,32(11):271-277.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-04-19
  • 最后修改日期:2024-05-22
  • 錄用日期:2024-05-22
  • 在線(xiàn)發(fā)布日期: 2024-11-19
  • 出版日期:
文章二維碼
达州市| 赣榆县| 雷波县| 海城市| 延边| 南郑县| 瑞昌市| 剑河县| 泾阳县| 子长县| 深泽县| 仙居县| 宁海县| 新野县| 开封市| 博客| 黄浦区| 禄丰县| 靖安县| 蒲江县| 乐业县| 寻甸| 岗巴县| 太仆寺旗| 延吉市| 溧阳市| 河东区| 龙门县| 太原市| 武冈市| 普宁市| 麻栗坡县| 蒲城县| 日土县| 平顶山市| 曲水县| 通山县| 肇州县| 即墨市| 清原| 娄烦县|