国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于圖優(yōu)化DWA算法的智能分揀機器局部運動(dòng)軌跡最優(yōu)規劃
DOI:
CSTR:
作者:
作者單位:

中北大學(xué)儀器與電子學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Optimal planning of local motion trajectory for intelligent sorting machines based on graph optimized DWA algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    智能分揀機器人最優(yōu)運動(dòng)軌跡規劃對于分揀效率和自動(dòng)化程度息息相關(guān)。研究將以智能分揀機器人為例,創(chuàng )新性對圖優(yōu)化動(dòng)態(tài)窗口方法的局部運動(dòng)軌跡規劃算法進(jìn)行了分析。該方法首先利用動(dòng)態(tài)窗口方法獲取多條軌跡,然后引入避障和增加全局路徑、點(diǎn)間距、非完整動(dòng)力學(xué)、加速度、速度等約束到每條運動(dòng)軌跡,進(jìn)而創(chuàng )建超圖。最后,采用C++軟件開(kāi)源的一般圖優(yōu)化采樣生成的運動(dòng)軌跡,并完成運動(dòng)軌跡評價(jià),找到最優(yōu)運動(dòng)路徑。圖優(yōu)化前后DWA的局部運動(dòng)軌跡規劃算法在豎向方向位置的估計誤差值較大,最小差值和最大差值分別為0.02m和3.25m,對應的時(shí)間為345s和697s。圖優(yōu)化前后DWA的局部運動(dòng)軌跡規劃算法的估計誤差稍微偏大,差值約為0.02m/s。改進(jìn)人工勢場(chǎng)法的局部路徑規劃算法、改進(jìn)時(shí)間彈性帶的局部路徑規劃算法的目標運動(dòng)軌跡重合度依次為72.68%和68.25%。研究設計的圖優(yōu)化DWA的局部運動(dòng)軌跡規劃算法能夠更好地實(shí)現對障礙物的合理避讓,與目標運動(dòng)軌跡重合度為89.25%。研究成果有效解決了智能分揀機器人最優(yōu)運動(dòng)軌跡規劃存在的規劃效率低等問(wèn)題,為實(shí)際移動(dòng)機器人的移動(dòng)控制技術(shù)的開(kāi)發(fā)提供新的可能。

    Abstract:

    The optimal motion trajectory planning of intelligent sorting robots is closely related to sorting efficiency and automation level. The research will be based on the IoT mobile data collected by intelligent sorting robots, and innovatively analyze the local motion trajectory planning algorithm of the graph optimization dynamic window method. This method first uses the dynamic window method to obtain multiple trajectories, and then introduces obstacle avoidance and increases global path, point spacing, non holonomic dynamics, acceleration, velocity, and other constraints to each motion trajectory, thereby creating a hypergraph. Finally, using open-source C++software for general graph optimization, the motion trajectory generated by sampling is optimized, and the evaluation of the motion trajectory is completed to find the optimal motion path. The local motion trajectory planning algorithm of DWA before and after graph optimization has a relatively large estimation error value in the vertical position, with a minimum and maximum difference of 0.02m and 3.25m, respectively, and corresponding time of 345s and 697s. The estimation error of the local motion trajectory planning algorithm for DWA before and after graph optimization is slightly larger, with a difference of about 0.02m/s. The local path planning algorithm for improving the artificial potential field method and the local path planning algorithm for improving the time elastic band have a target motion trajectory overlap of 72.68% and 68.25%, respectively. The local motion trajectory planning algorithm of the graph optimized DWA designed for research can better achieve reasonable avoidance of obstacles, with a coincidence degree of 89.25% with the target motion trajectory. The research results have effectively solved the problems of low planning efficiency in the optimal motion trajectory planning of intelligent sorting robots, providing new possibilities for the development of actual mobile robot motion control technology.

    參考文獻
    相似文獻
    引證文獻
引用本文

張宇璇,駢璐璐,張楠.基于圖優(yōu)化DWA算法的智能分揀機器局部運動(dòng)軌跡最優(yōu)規劃計算機測量與控制[J].,2024,32(9):315-321.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-03-26
  • 最后修改日期:2024-05-09
  • 錄用日期:2024-04-26
  • 在線(xiàn)發(fā)布日期: 2024-10-08
  • 出版日期:
文章二維碼
读书| 南漳县| 九江县| 睢宁县| 读书| 昔阳县| 大名县| 建湖县| 南陵县| 聂荣县| 天津市| 江都市| 无极县| 吉首市| 满洲里市| 岳阳市| 微山县| 靖边县| 曲阜市| 溧水县| 红原县| 绥阳县| 锦州市| 堆龙德庆县| 黄大仙区| 肃宁县| 盐边县| 贵港市| 绥中县| 襄樊市| 墨竹工卡县| 鲁山县| 台中县| 鄂托克前旗| 湘阴县| 上思县| 桑日县| 台前县| 阿拉善盟| 信阳市| 吉首市|