国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

通道空間深度感知的輕量化水下目標檢測
DOI:
CSTR:
作者:
作者單位:

青島科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

1.山東省重點(diǎn)研發(fā)計劃(科技示范工程)(2021SFGC0701);2.青島市海洋科技創(chuàng )新專(zhuān)項(22-3-3-hygg-3-hy);


Lightweight underwater target detection for channel spatial depth perception
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了一種通道空間深度感知的輕量化水下目標檢測網(wǎng)絡(luò )CSDP-L-YOLO。該網(wǎng)絡(luò )基于YOLOv5網(wǎng)絡(luò )進(jìn)行改進(jìn),由特征感知模塊和雙注意門(mén)控策略組成。特征感知模塊旨在將解碼器中的多級特征自適應抑制或增強,優(yōu)化類(lèi)內學(xué)習的一致性,解決水下場(chǎng)景復雜導致的誤檢和漏檢問(wèn)題;通過(guò)線(xiàn)性操作和混洗結構生成特征映射,減少冗余特征的融合和計算,以減少模型的參數量和計算量。雙注意門(mén)控策略是在編碼器中同時(shí)引入并發(fā)通道空間擠壓-激勵機制模塊和卷積注意力模塊,進(jìn)一步關(guān)注強相關(guān)性特征,增強模型對特征的敏感度。實(shí)驗結果表明,與基線(xiàn)模型YOLOv5-s相比,mAP提高了2.4%,節省了20%參數量和15.8%計算量,檢測速度提升了8.2 ms。此外,與目前較為先進(jìn)的YOLOv8模型相比,mAP提高了1.9%。

    Abstract:

    A lightweight underwater target detection network CSDP-L-YOLO for channel spatial depth perception is proposed. The network is improved based on the YOLOv5 network and consists of a feature awareness module and a two-attention gating strategy. The feature sensing module aims at adaptive suppression or enhancement of multi-level features in the decoder, optimizing the consistency of in-class learning, and solving the problem of false detection and missing detection caused by the complexity of underwater scenes. The feature mapping is generated by linear operation and mixing structure to reduce the fusion and calculation of redundant features, so as to reduce the number of parameters and calculation amount of the model. The dual attention gating strategy is to introduce concurrent channel space squeezing and stimulation module and convolutional attention module into the encoder at the same time to further focus on the strong correlation features and enhance the sensitivity of the model to the features. The experimental results show that compared with the baseline model, mAP improves by 2.4%, saves 20% parameters and 15.8% computation, and improves the detection speed by 8.2 ms. In addition, mAP improves by 1.9% compared to the current more advanced YOLOv8 model.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙瑞金,李海濤,陸光豪.通道空間深度感知的輕量化水下目標檢測計算機測量與控制[J].,2024,32(9):86-93.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-03-03
  • 最后修改日期:2024-03-28
  • 錄用日期:2024-03-29
  • 在線(xiàn)發(fā)布日期: 2024-10-08
  • 出版日期:
文章二維碼
永新县| 南澳县| 皋兰县| 平和县| 克山县| 康平县| 墨脱县| 无棣县| 郴州市| 平顶山市| 保亭| 义乌市| 仁化县| 禹城市| 泰兴市| 吉木萨尔县| 绥棱县| 河南省| 赤壁市| 宣化县| 珠海市| 淳化县| 西丰县| 海城市| 集安市| 普兰店市| 鲜城| 蓝田县| 景洪市| 南乐县| 肃北| 武山县| 桓台县| 钦州市| 昌宁县| 米脂县| 阿拉善盟| 江都市| 盐津县| 辽中县| 宜良县|