国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于動(dòng)態(tài) Transformer 的監控視頻摘系統設計
DOI:
CSTR:
作者:
作者單位:

江南大學(xué) 物聯(lián)網(wǎng)工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.4

基金項目:

國家自然科學(xué)基金(61873112,61802107)


Design of a Dynamic Transformer-based Surveillance Video Summarization System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    監控視頻系統是一種重要的技術(shù)手段,用于從龐大而復雜的監控視頻中提取關(guān)鍵信息,為安全管理和事件分析提供有效支持。隨著(zhù)監控設備的普及和監控視頻數據的快速增長(cháng),傳統的手動(dòng)方法已經(jīng)無(wú)法滿(mǎn)足快速處理和準確提取所需信息的需求,現代的深度學(xué)習方法普遍存在計算復雜度高,參數多的問(wèn)題。針對這一問(wèn)題,提出了一種基于動(dòng)態(tài)Transformer的監控視頻模型。自動(dòng)為每個(gè)輸入視頻幀配置適當數量的token,通過(guò)級聯(lián)多個(gè)Transformer模型,并逐漸增加生成的token數量,以實(shí)現自適應的激活順序;一旦產(chǎn)生足夠置信的預測,推理過(guò)程就會(huì )終止,并采用了特征重用和注意力重用技術(shù)以減少冗余計算;該模型在降低計算復雜度方面取得了顯著(zhù)進(jìn)展,經(jīng)實(shí)驗測試,相較于傳統模型,該動(dòng)態(tài)Transformer模型在準確率上有所提升,在這兩個(gè)公開(kāi)數據集上分數指標分別提高了3.7%和0.9%,同時(shí)計算復雜度降低了40%,可以滿(mǎn)足精度要求和監控要求,證明模型具有良好的泛化性。

    Abstract:

    The surveillance video summarization system is an important technical tool used to extract key information from large and complex surveillance videos, providing effective support for security management and event analysis. Traditional manual summarization methods have become inadequate in meeting the demands of rapid processing and accurate extraction of necessary information due to the proliferation of surveillance devices and the rapid growth of surveillance video data. Modern deep learning methods commonly suffer from high computational complexity and a large number of parameters. To address this issue, a dynamic Transformer-based surveillance video summarization model is proposed.The model automatically assigns an appropriate number of tokens to each input video frame, cascades multiple Transformer models, and gradually increases the number of generated tokens to achieve adaptive activation order. Once sufficiently confident predictions are made, the inference process terminates. The model employs feature reuse and attention reuse techniques to reduce redundant computations. It has made significant progress in reducing computational complexity.Experimental tests show that compared to traditional models, the dynamic Transformer model achieves improvements in accuracy, with score metrics increasing by 3.7% and 0.9% on two publicly available datasets, respectively. At the same time, the computational complexity is reduced by 40%. This model can meet the precision requirements and surveillance demands, demonstrating good generalization performance.

    參考文獻
    相似文獻
    引證文獻
引用本文

阮志堅,彭力.基于動(dòng)態(tài) Transformer 的監控視頻摘系統設計計算機測量與控制[J].,2024,32(8):201-208.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-01-16
  • 最后修改日期:2024-02-23
  • 錄用日期:2024-02-28
  • 在線(xiàn)發(fā)布日期: 2024-09-02
  • 出版日期:
文章二維碼
临江市| 通化市| 镇宁| 湾仔区| 基隆市| 麦盖提县| 井冈山市| 龙山县| 曲靖市| 嵊泗县| 万安县| 东宁县| 江陵县| 松滋市| 绥芬河市| 铜川市| 扎囊县| 保德县| 濮阳市| 盘山县| 得荣县| 乐清市| 肥城市| 隆回县| 夏河县| 迭部县| 揭东县| 河源市| 永修县| 闻喜县| 从化市| 翁牛特旗| 象州县| 德令哈市| 元江| 沭阳县| 丰城市| 会东县| 麦盖提县| 安阳市| 吐鲁番市|