国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv7的室內摔倒行為檢測
DOI:
CSTR:
作者:
作者單位:

西安工程大學(xué) 計算機科學(xué)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.41

基金項目:


Indoor fall behavior detection algorithm based on improved YOLOv7
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對室內監控視頻中老年人摔倒行為的檢測問(wèn)題,提出一種基于改進(jìn) YOLOv7 網(wǎng)絡(luò )模型的實(shí)時(shí)摔倒行為檢測算法。基于YOLOv7的目標檢測模型傳統使用跨步卷積來(lái)實(shí)現下采樣特征,但這可能會(huì )使目標信息的特征模糊。為了解決這個(gè)問(wèn)題,引入了新的下采樣模塊——魯棒特征下采樣,以改善下采樣過(guò)程中目標信息特征的清晰度。此外,通過(guò)在網(wǎng)絡(luò )的 concat 部分引入 CoordAttention 注意力機制,可更好地融合拼接后的特征圖。實(shí)驗結果表明,改進(jìn)后的YOLOv7模型在摔倒行為檢測方面具有較高的準確率和檢測性能,準確率達到98.88%,mAP50值達到98.83%,mAP50-95值達到74.12%。這意味著(zhù)該算法可以準確地檢測老年人的摔倒行為,家人能夠及時(shí)地發(fā)現,以便及時(shí)采取必要的救助措施。

    Abstract:

    Aiming at the problem of fall behavior detection in indoor surveillance video, a real-time fall behavior detection algorithm based on improved YOLOv7 network model was proposed. The target detection model based on YOLOv7 traditionally uses strided convolution to realize the feature of downsampling, but this may make the feature of the target information fuzzy. To solve this problem, a new downsampling module, robust feature downsampling, is introduced to improve the clarity of target information features during downsampling. In addition, by introducing CoordAttention attention mechanism in the concat portion of the network, the spliced feature graphs can be better merged. The experimental results show that the improved YOLOv7 model has a high accuracy and detection performance in fall behavior detection, with the accuracy reaching 98.88%, the mAP50 value reaching 98.83%, and the mAP50-95 value reaching 74.12%.This means that the algorithm can accurately detect the fall behavior of the elderly, and the family can find it in time so that the necessary rescue measures can be taken in time.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳華艷,張曉濱.基于改進(jìn)YOLOv7的室內摔倒行為檢測計算機測量與控制[J].,2024,32(12):35-42.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-11-01
  • 最后修改日期:2023-12-13
  • 錄用日期:2023-12-14
  • 在線(xiàn)發(fā)布日期: 2024-12-24
  • 出版日期:
文章二維碼
广宗县| 沙河市| 托克托县| 翼城县| 临夏市| 潜山县| 黄龙县| 乌审旗| 百色市| 松潘县| 渝北区| 平度市| 柳林县| 嘉峪关市| 慈利县| 巩义市| 保定市| 新民市| 韶山市| 民和| 高雄市| 宁安市| 高淳县| 巨野县| 钦州市| 博兴县| 松原市| 鹤山市| 漳平市| 东明县| 曲周县| 岳池县| 旌德县| 雅江县| 昭苏县| 应城市| 宜州市| 左云县| 湟源县| 霞浦县| 清丰县|