国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

改進(jìn)的多特征粒子濾波目標跟蹤算法研究
DOI:
CSTR:
作者:
作者單位:

常州工程職業(yè)技術(shù)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.9

基金項目:

常州工程職業(yè)技術(shù)學(xué)院校科研基金課題(11130300120010); 江蘇省重點(diǎn)研發(fā)計劃項目(BE2020006-2);江蘇省重點(diǎn)研發(fā)計劃項目(BE2021016-2)


Research on Improved Multi-feature Particle Filter Target Tracking Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對在復雜環(huán)境下多特征融合的粒子濾波算法跟蹤精確度低的問(wèn)題,提出一種改進(jìn)的多特征融合算法;該算法采用二階中心差分卡爾曼濾波方法來(lái)實(shí)現建議分布函數的優(yōu)化,在重要性采樣中融入最新的測量信息,提高了粒子的使用效率,并引入動(dòng)態(tài)模板更新機制對目標模板實(shí)時(shí)更新;在多特征融合策略上利用基于粒子濾波框架下的EM算法適用于不同數量樣本集的特點(diǎn)求解狀態(tài)估計,不僅避免因計算特征權重產(chǎn)生誤差,而且提高了算法的實(shí)時(shí)性;濾波器仿真實(shí)驗結果表明,在一維非線(xiàn)性模型下對比其它改進(jìn)粒子濾波算法,本文提出的方法性能最優(yōu);在基于視頻序列的目標跟蹤實(shí)驗中,通過(guò)比較本文算法在不同特征、不同采樣粒子數量條件下的性能對比驗證本文算法的有效性;最后通過(guò)一系列不同環(huán)境下的跟蹤實(shí)驗證明,本文算法對復雜條件下的目標跟蹤具有較高的精度和魯棒性。

    Abstract:

    In order to solve the problem that the particle filter(PF) algorithm based on multi-feature fusion under complex environment did not offer a high accuracy of tracking technique, an improved multi-feature fusion algorithm was proposed. The research proposed the second-order central difference Kalman filter(SO-CDKF) to generate the proposal distribution function which can match the true posterior distribution more closely. The latest observation information was fused into the importance sampling to improve the efficiency of particles. Meanwhile, the introduction of template updating strategy was combined to update target template in real time. In multi-feature fusion strategy, Expectation-Maximization(EM) algorithm based on PF framework was used to get the state estimation of different quantity of particle sets, so as to avoid errors caused by calculating the weights of multi-feature, and improve the real-time performance. Filter simulation results show that the proposed method has the best performance compared with the other improved PF algorithms in one-dimensional nonlinear model. In the experiment of target tracking based on video sequence, the effec-tiveness of the proposed algorithm is verified by comparing it’s performance of different features and quantity of particles. Finally, a series of tracking experiments in different environments show that the pro-posed algorithm has high accuracy and robustness for target tracking under complex conditions.

    參考文獻
    相似文獻
    引證文獻
引用本文

張蘊綺,郭發(fā)勇,朱梓清,王亞民.改進(jìn)的多特征粒子濾波目標跟蹤算法研究計算機測量與控制[J].,2023,31(12):322-329.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-10-09
  • 最后修改日期:2023-10-27
  • 錄用日期:2023-10-27
  • 在線(xiàn)發(fā)布日期: 2023-12-27
  • 出版日期:
文章二維碼
榕江县| 江口县| 横峰县| 左云县| 循化| 鄂伦春自治旗| 梧州市| 岗巴县| 长白| 新民市| 韶山市| 民县| 永清县| 铁岭市| 曲麻莱县| 宜州市| 左云县| 辰溪县| 枝江市| 阳西县| 清苑县| 永春县| 芮城县| 四平市| 永济市| 曲松县| 曲水县| 桃源县| 钟祥市| 稷山县| 阳山县| 安康市| 东港市| 巴彦淖尔市| 西藏| 普宁市| 西充县| 庐江县| 遵义市| 承德市| 象州县|