国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YoloV5的絕緣子損壞檢測識別
DOI:
CSTR:
作者:
作者單位:

南京工程學(xué)院 人工智能產(chǎn)業(yè)技術(shù)研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金青年基金資助項目(61903183)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    絕緣子是一種設計用于在不同電勢導線(xiàn)上承受電壓和機械壓力的裝置。由于電環(huán)境和電力負載波動(dòng)的影響,絕緣子可能會(huì )遭受多種電-機耦合應力破壞,從而無(wú)法正常工作并且影響整個(gè)絕緣子網(wǎng)絡(luò )的壽命。為了解決這個(gè)問(wèn)題,提出了通過(guò)目標檢測算法來(lái)檢測絕緣子損壞的方案。改進(jìn)的方案基于YOLOv5s模型進(jìn)行。首先,在原有的YOLOv5s模型基礎上增加了更多的小目標檢測層,從而提高了檢測的精度。此外,引入了額外的運算層以擴展特征圖,并使用SEA(注意和觀(guān)察)注意模塊使網(wǎng)絡(luò )更專(zhuān)注于檢測對象。還采用SIOU代替YOLOv5s中的損失函數。實(shí)驗結果顯示,改進(jìn)后的模型相對于傳統的YOLOv5s模型在絕緣子損壞檢測方面具有明顯優(yōu)勢。改進(jìn)后的模型在mAP(平均精度均值)、P(查準率)和R(查全率)等指標上分別提高了2.5%、1.1%和0.8%。與原始的YOLOv5s模型以及其他模型(如Yolov5m、Yolov5l等)相比,在絕緣子缺陷檢測和識別方面具有更強的競爭力。這些改進(jìn)策略為提高絕緣子損壞檢測精度提供了有效的解決方案。通過(guò)這些改進(jìn),我們可以更準確地檢測絕緣子損壞,并及早采取必要的維修和保養措施,以延長(cháng)絕緣子的壽命和確保電力系統的穩定運行。

    Abstract:

    An insulator is a device designed to withstand voltage and mechanical pressure on conductors with different potentials. Due to the impact of electrical environment and power load fluctuations, insulators may be subjected to various electrical mechanical coupling stresses, which may prevent them from working properly and affect the lifespan of the entire insulator network. To address this issue, a scheme was proposed to detect insulator damage through object detection algorithms. The improved solution is based on the YOLOv5s model. Firstly, more small object detection layers have been added to the original YOLOv5s model, thereby improving the detection accuracy. In addition, an additional computational layer was introduced to extend the feature map, and the SEA (Attention and Observation) attention module was used to make the network more focused on detecting objects. SIOU is also used to replace the Loss function in YOLOv5s. The experimental results show that the improved model has significant advantages in insulator damage detection compared to the traditional YOLOv5s model. The improved model improved by 2.5%, 1.1%, and 0.8% on indicators such as mAP (mean accuracy), P (precision), and R (recall), respectively. Compared with the original YOLOv5s model and other models (such as Yolov5m, Yolov5l, etc.), it has stronger competitiveness in insulator defect detection and recognition. These improvement strategies provide effective solutions for improving the accuracy of insulator damage detection. Through these improvements, we can more accurately detect insulator damage and take necessary repair and maintenance measures as soon as possible to extend the lifespan of insulators and ensure the stable operation of the power system.

    參考文獻
    相似文獻
    引證文獻
引用本文

黃國恒,曹雪虹,焦良葆,錢(qián)予陽(yáng).基于改進(jìn)YoloV5的絕緣子損壞檢測識別計算機測量與控制[J].,2024,32(7):23-29.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-07-05
  • 最后修改日期:2023-08-14
  • 錄用日期:2023-08-15
  • 在線(xiàn)發(fā)布日期: 2024-08-02
  • 出版日期:
文章二維碼
荆州市| 承德县| 乃东县| 阿拉善左旗| 常宁市| 汨罗市| 三台县| 永清县| 武冈市| 天峻县| 石狮市| 依兰县| 平邑县| 和田县| 伊宁县| 雅安市| 佛坪县| 钟山县| 资兴市| 宁波市| 资源县| 舞钢市| 甘谷县| 即墨市| 江北区| 隆回县| 龙口市| 岳普湖县| 青铜峡市| 潮安县| 葵青区| 吴旗县| 五大连池市| 西宁市| 吉木萨尔县| 莎车县| 清涧县| 边坝县| 晴隆县| 牟定县| 纳雍县|