国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于卷積注意力特征遷移學(xué)習的滾動(dòng)軸承故障診斷
DOI:
CSTR:
作者:
作者單位:

成都天奧測控技術(shù)有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Fault diagnosis for rolling bearings based on convolutional attention-based feature transfer learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對變工況條件下因源域和目標域樣本數據分布差異大造成滾動(dòng)軸承故障診斷準確率較低的問(wèn)題,提出一種新的遷移學(xué)習方法——卷積注意力特征遷移學(xué)習(Convolutional Attention-based Feature Transfer Learning, CAFTL),并用于變工況條件下的滾動(dòng)軸承故障診斷。在所提出的CAFTL中,將源域和目標域樣本經(jīng)過(guò)多頭自注意力計算再經(jīng)過(guò)歸一化之后,輸入到卷積神經(jīng)網(wǎng)絡(luò )中得到對應的源域和目標域特征;然后通過(guò)域自適應遷移學(xué)習網(wǎng)絡(luò )將兩域特征投影到同一個(gè)公共特征空間內;接著(zhù),利用由源域有標簽樣本構建的分類(lèi)器進(jìn)行分類(lèi);最后,利用隨機梯度下降(Stochastic Gradient Descent, SGD)方法對CAFTL進(jìn)行訓練和參數更新,得到CAFTL的最優(yōu)參數集后將參數優(yōu)化后的CAFTL用于滾動(dòng)軸承待測樣本的故障診斷。滾動(dòng)軸承故障診斷實(shí)例驗證了所提出的方法的有效性。

    Abstract:

    Aiming at the problem that the accuracy of rolling bearing fault diagnosis is low due to the large difference in the distribution of sample data between the source domain and the target domain under variable working conditions, a new transfer learning method called convolutional attention based Feature Transfer Learning (CAFTL) is proposed and used for fault diagnosisof rolling bearings under variable working conditions. In the proposed CAFTL, the source and target domain samples are input to the convolutional neural network after multi-head self-attentive computation and normalization to obtain the corresponding source and target domain features; then, the two domain features are projected into the same common feature space by the domain adaptive transfer learning network; then, the classifier constructed from the source domain labeled samples is used for classification; finally, the Stochastic Gradient Descent (SGD) method is used to train and update the parameters of CAFTL, after obtaining the optimal parameter set of CAFTL, the optimized CAFTL is used for fault diagnosis of rolling bearing samples to be tested. A fault diagnosis example for rolling bearings verifies the effectiveness of the proposed method.

    參考文獻
    相似文獻
    引證文獻
引用本文

鄒建.基于卷積注意力特征遷移學(xué)習的滾動(dòng)軸承故障診斷計算機測量與控制[J].,2024,32(1):23-29.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-06-26
  • 最后修改日期:2023-07-24
  • 錄用日期:2023-07-24
  • 在線(xiàn)發(fā)布日期: 2024-01-29
  • 出版日期:
文章二維碼
都昌县| 郎溪县| 峨山| 大厂| 高密市| 苏尼特右旗| 长泰县| 滨州市| 伊宁县| 大英县| 罗城| 璧山县| 望都县| 丹阳市| 靖州| 壤塘县| 保定市| 朔州市| 巍山| 时尚| 玛曲县| 黄陵县| 荔波县| 宜阳县| 泾川县| 寿宁县| 平昌县| 涿鹿县| 龙岩市| 忻州市| 昭平县| 宜君县| 渭南市| 方山县| 本溪市| 秦安县| 苍南县| 贵定县| 依兰县| 鹿邑县| 吉木萨尔县|