国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5s的車(chē)載人員安全帶行為檢測
DOI:
CSTR:
作者:
作者單位:

南京工程學(xué)院 人工智能產(chǎn)業(yè)技術(shù)研究院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

江蘇省自然科學(xué)基金資助項目(BK20201042);江蘇省政策引導類(lèi)計劃項目(SZ-SQ2020007)


Seatbelt behavior detection of vehicle occupants based on improved YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    車(chē)載人員佩戴安全帶行為的檢測對于人的生命安全保障具有重要作用。針對目前車(chē)內復雜環(huán)境下車(chē)載人員佩戴安全帶檢測精度不高的問(wèn)題,提出一種基于改進(jìn)的YOLOv5s(You Only Look Once v5s)車(chē)載人員佩戴安全帶的檢測方法。該檢測方法將YOLOv5s作為基礎網(wǎng)絡(luò ),在此基礎上進(jìn)行改進(jìn)。為改善深度模型對特征信息的提取能力,采用RFB(Receptive Field Block)模塊增大網(wǎng)絡(luò )的感受野,并利用RFB模塊多分支結構獲得混合的感受野;加入ECA(Efficient Channel Attention)注意力通道模塊,使得整個(gè)網(wǎng)絡(luò )更加專(zhuān)注特征信息的提取;將原YOLOv5s的損失函數替換為EIOU,進(jìn)一步提高網(wǎng)絡(luò )對安全帶的檢測精度。經(jīng)過(guò)實(shí)驗結果表面,改進(jìn)后網(wǎng)絡(luò )與原YOLOv5s網(wǎng)絡(luò )相比,其平均精度均值(mAP,mean Average Precision)提高了2.2%,查準率(Precision)提升了5.1%。改進(jìn)后的網(wǎng)絡(luò )具有良好的提升效果,表明了該方法的有效性。

    Abstract:

    The detection of seatbelt wearing behavior of vehicle-borne personnel plays an important role in ensuring human life safety. Aiming at the problem of low detection accuracy of seat belt worn by vehicle occupants in complex environment, an improved detection method based on YOLOv5s(You Only Look Once v5s) was proposed. The detection method takes YOLOv5s as the basic network and improves on it. In order to improve the ability of the depth model to extract feature information, the Receptive Field of the network is expanded by using the receptive field RFB(Receptive Field Block) module, and the hybrid receptive field is obtained by using the multi-branch structure of the RFB module. Adding the Efficient Channel Attention ECA(Efficient Channel Attention) module makes the entire network focus more on extracting feature information. The loss function of the original YOLOv5s is replaced by EIOU to further improve the detection accuracy of the safety belt. The experimental results show that compared with the original YOLOv5s network, the mAP (mean Average Precision) of the improved network is increased by 2.2%, and the Precision is increased by 5.1%. The improved network has good enhancement effect, which shows the effectiveness of the method.

    參考文獻
    相似文獻
    引證文獻
引用本文

焦波,焦良葆,吳繼薇,祝陽(yáng),高? 陽(yáng).基于改進(jìn)YOLOv5s的車(chē)載人員安全帶行為檢測計算機測量與控制[J].,2024,32(4):22-27.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-05-11
  • 最后修改日期:2023-06-15
  • 錄用日期:2023-06-16
  • 在線(xiàn)發(fā)布日期: 2024-04-29
  • 出版日期:
文章二維碼
隆化县| 赣州市| 湖南省| 财经| 于都县| 维西| 平阴县| 隆昌县| 汝州市| 香格里拉县| 郓城县| 渝中区| 凌源市| 仪征市| 正阳县| 镶黄旗| 九寨沟县| 柳州市| 隆尧县| 宁南县| 府谷县| 马公市| 成安县| 潮州市| 龙州县| 桦甸市| 靖宇县| 迭部县| 施秉县| 洛宁县| 莱西市| 靖西县| 皮山县| 张掖市| 洛南县| 肃宁县| 瓦房店市| 即墨市| 玛多县| 芦溪县| 贵南县|