国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于BO-DKELM的滾動(dòng)軸承故障診斷
DOI:
CSTR:
作者:
作者單位:

海軍航空大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP206

基金項目:


Rolling Bearing Fault Diagnosis Based on BO-DKELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    滾動(dòng)軸承作為旋轉機械中的必需元件,其任何故障都可能導致機器乃至整個(gè)系統發(fā)生故障,從而導致巨大的經(jīng)濟損失和時(shí)間的浪費,因此必須要及時(shí)準確地診斷滾動(dòng)軸承故障。針對傳統極限學(xué)習機中模型參數對滾動(dòng)軸承故障診斷精度影響較大的問(wèn)題,提出了一種基于貝葉斯優(yōu)化的深度核極限學(xué)習機的滾動(dòng)軸承故障診斷方法。首先,將自動(dòng)編碼器與核極限學(xué)習機相結合,構建了深度核極限學(xué)習機(Deep kernel extreme learning machine, DKELM)模型。其次,利用貝葉斯優(yōu)化(Bayesian optimization, BO)算法對DKELM中的超參數進(jìn)行尋優(yōu),使得訓練數據集和驗證數據集在DKELM模型中的分類(lèi)錯誤率之和最低。然后,將測試數據集輸入到訓練好的BO-DKELM中進(jìn)行故障診斷。最后,采用凱斯西儲大學(xué)軸承故障數據集對所提方法進(jìn)行驗證,最終故障診斷精度為99.6%,與深度置信網(wǎng)絡(luò )和卷積神經(jīng)網(wǎng)絡(luò )等傳統智能算法進(jìn)行對比,所提方法具有更高的故障診斷精度。

    Abstract:

    As a necessary component in rotating machinery, any failure of rolling bearings may lead to the failure of the machine or even the whole system, which leads to huge economic loss and time wastage. Therefore,it is necessary to diagnose the rolling bearing fault promptly and accurately. In response to the problem that the model parameters in the traditional extreme learning machine have a large influence on the fault diagnosis accuracy of rolling bearings, a rolling bearing fault diagnosis method based on a deep kernel extreme learning machine with Bayesian optimization is proposed. Firstly, the deep kernel extreme learning machine (DKELM) model is constructed by combining the auto encoder (AE) with the kernel extreme learning machine (KELM). Secondly, a Bayesian optimization algorithm is used to find the optimal hyperparameters in the DKELM, such that the sum of the classification error rates of the training and validation datasets in the DKELM model is minimized. The test dataset was then fed into the trained BO-DKELM for fault diagnosis. Finally, the proposed method was validated using the Case Western Reserve University bearing fault dataset, and the final fault diagnosis accuracy is 99.6%, comparing with traditional intelligent algorithms such as deep belief networks and convolutional neural networks, the proposed method has higher fault diagnosis accuracy.

    參考文獻
    相似文獻
    引證文獻
引用本文

聶新華,秦玉峰,李尚璁.基于BO-DKELM的滾動(dòng)軸承故障診斷計算機測量與控制[J].,2024,32(4):8-14.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-04-30
  • 最后修改日期:2023-06-19
  • 錄用日期:2023-06-20
  • 在線(xiàn)發(fā)布日期: 2024-04-29
  • 出版日期:
文章二維碼
巢湖市| 南丹县| 平乡县| 松江区| 凤城市| 正宁县| 南昌县| 玉林市| 金秀| 永吉县| 宁德市| 青冈县| 邢台市| 衡山县| 确山县| 鄄城县| 白城市| 读书| 寿阳县| 绥德县| 锡林郭勒盟| 融水| 锡林浩特市| 唐河县| 三河市| 神木县| 四会市| 曲周县| 巴里| 北京市| 莱阳市| 修文县| 曲阜市| 晋中市| 图们市| 荣昌县| 双流县| 聂荣县| 铁岭县| 广饶县| 灵宝市|