国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于注意力機制和多空間金字塔池化的實(shí)時(shí)目標檢測算法
DOI:
CSTR:
作者:
作者單位:

山西大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(11804209),山西省自然科學(xué)基金(201901D111031,201901D211173),山西省高校科技創(chuàng )新計劃(2019L0064, 2020L0051)


Real-Time Object Detection Algorithm based on Attention Mechanism and multi-spatial Pyramid Pooling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    YOLOv4計算復雜度高、空間金字塔池化模塊僅一次增強特征融合網(wǎng)絡(luò )的深層區域特征圖的表征能力、檢測頭網(wǎng)絡(luò )的特征圖難以突出重要通道特征;針對以上問(wèn)題,提出一種基于注意力機制和多空間金字塔池化的實(shí)時(shí)目標檢測算法;該算法采用多空間金字塔池化,提取局部特征和全局特征,融合多重感受野,加強特征融合網(wǎng)絡(luò )的淺、中、深層特征圖的表征能力;引入壓縮激勵通道注意力機制,建模通道間的相關(guān)性,自適應調整特征圖各個(gè)通道的權重,從而使網(wǎng)絡(luò )更加關(guān)注重要特征;特征融合和檢測頭網(wǎng)絡(luò )中使用深度可分離卷積,減少了網(wǎng)絡(luò )參數量;實(shí)驗結果表明,所提算法的均值平均精度均高于其他七種主流對比算法;與YOLOv4相比,參數量、模型大小分別減少了27.85 M和106.25 MB,所提算法在降低復雜度的同時(shí),提高了檢測準確度;且該算法的檢測速率達到33.70 幀/秒,滿(mǎn)足實(shí)時(shí)性要求。

    Abstract:

    A novel algorithm named as real-time object detection algorithm based on attention mechanism and multi-spatial pyramid pooling is proposed to avoid the disadvantages of an enhancement to the representational power of the deep feature maps of the feature fusion network for the spatial pyramid pooling module, higher computational complexity and the difficulty in highlighting important channel features for the feature maps of the detection head network in YOLOv4 algorithm. Since multiple receptive fields are fused after extracting multi-scale information by multi-space pyramid pooling, the characterization ability of the shallow, middle and deep feature maps is strengthened for the feature fusion network. By utilizing the squeeze-and-excitation channel attention mechanism to model interdependencies between channels, the weight of each channel is adaptively recalibrated to make the network pay more attention to important features. Moreover, the depthwise separable convolution is exploited to reduce the parameters of the feature fusion and detection head networks. The experimental results show that the mean average precision of the proposed algorithm is higher than that of the state-of-the-art algorithms, while the average speed of the algorithm reaches 33.70FPS, which meets the real-time requirements. Compared with YOLOv4, the parameters and model size are reduced by 27.85M and 106.25MB, respectively. The presented algorithm not only improves the detection accuracy, but also reduces the computational complexity compared to the baseline algorithm.

    參考文獻
    相似文獻
    引證文獻
引用本文

王國剛,李澤欣,董志豪.基于注意力機制和多空間金字塔池化的實(shí)時(shí)目標檢測算法計算機測量與控制[J].,2024,32(2):56-64.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-03-08
  • 最后修改日期:2023-04-20
  • 錄用日期:2023-04-21
  • 在線(xiàn)發(fā)布日期: 2024-03-20
  • 出版日期:
文章二維碼
额济纳旗| 滨海县| 南安市| 海淀区| 永济市| 军事| 沾益县| 安乡县| 洛宁县| 沿河| 新宾| 福安市| 恩平市| 景德镇市| 文昌市| 郧西县| 沙雅县| 中西区| 永川市| 东海县| 怀柔区| 武邑县| 于都县| 樟树市| 河曲县| 金乡县| 工布江达县| 高淳县| 洞头县| 瑞安市| 汕头市| 平遥县| 宜昌市| 临漳县| 林西县| 辽中县| 苏尼特右旗| 安新县| 阿合奇县| 和田县| 九台市|