国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于PU-Faster R-CNN的手機屏幕缺陷檢測算法研究
DOI:
CSTR:
作者:
作者單位:

廣東工業(yè)大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP18;

基金項目:

科技創(chuàng )新2030-“新一代人工智能”國家級重大項目(2020AAA0108304)


PU-Faster R-CNN Based Defect Detection Modelfor Mobile Phone Screen
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    手機屏幕缺陷檢測是手機生產(chǎn)的重要環(huán)節,實(shí)現準確而高效的屏幕缺陷檢測對于提高手機工業(yè)產(chǎn)能具有重要意義。在實(shí)際生產(chǎn)過(guò)程中,手機屏幕圖像缺陷特征隱晦、缺陷尺寸差異大等問(wèn)題,加大了手機屏幕缺陷檢測的難度。為解決上述問(wèn)題,提出了一種基于Preprocessing operations are combined with U-Net-Faster R-CNN(PU-Faster R-CNN)的手機屏幕缺陷檢測模型。針對手機屏幕圖像的特征信息隱晦的問(wèn)題,提出多層特征增強模塊,有效的對目標缺陷特征信息進(jìn)行增強。構建多尺度特征提取網(wǎng)絡(luò ),有效提取多尺度的缺陷特征信息。為了生成擬合性更好的Anchor box,提出了自適應區域建議網(wǎng)絡(luò ),通過(guò)自迭代聚類(lèi)算法生成尺寸更準確的Anchor box模板。實(shí)驗結果表明,基于PU-Faster R-CNN的手機屏幕檢測框架在手機屏幕數據集上優(yōu)于主流的手機屏幕缺陷檢測框架。

    Abstract:

    Mobile phone screen defect detection is an important part of mobile phone production. To achieve accurate and efficient defect detection is of great significance for improving the productivity of mobile phone industry. In the actual production process, the screen defect image features are not obvious and the defect size difference is large, which increases the difficulty of mobile phone screen defect detection. A mobile phone screen defect detection model based on PU-Faster R-CNN was proposed to solve the above problems. For the problem of obscure feature information of cell phone screen images, a multi-layer feature enhancement module was proposed to effectively enhance the target defect feature information. A multi-scale feature extraction network was constructed to effectively extract multi-scale defect feature information. In order to generate Anchor boxes with better fitting performance, an adaptive region proposal network was proposed to generate Anchor box templates with more accurate size by self-iterative clustering algorithm. The experimental results showed that the framework was superior to the mainstream mobile phone screen defect detection framework in mobile phone screen datasets.

    參考文獻
    相似文獻
    引證文獻
引用本文

李偉朝,陳志豪,張勰,查云威.基于PU-Faster R-CNN的手機屏幕缺陷檢測算法研究計算機測量與控制[J].,2023,31(7):99-106.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-01-17
  • 最后修改日期:2023-02-24
  • 錄用日期:2023-02-24
  • 在線(xiàn)發(fā)布日期: 2023-07-12
  • 出版日期:
文章二維碼
达孜县| 上林县| 克拉玛依市| 扎赉特旗| 浦城县| 马尔康县| 五常市| 秭归县| 噶尔县| 沾益县| 安西县| 海晏县| 习水县| 九江县| 藁城市| 和田市| 弥勒县| 赞皇县| 滁州市| 兴义市| 晋城| 瑞金市| 肃北| 兴安盟| 新昌县| 巴彦县| 新竹市| 柏乡县| 仙游县| 奎屯市| 通州区| 丹江口市| 石渠县| 寻乌县| 丹东市| 仪征市| 舞钢市| 丽水市| 新昌县| 苏尼特左旗| 岑巩县|