国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

融合YOLO v3與改進(jìn)ReXNet的手勢識別方法研究
DOI:
CSTR:
作者:
作者單位:

江蘇省南京市南京工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金青年基金資助項目(61903183)


Research on Gesture Recognition Method Integrating YOLO v3 and Improved ReXNet

Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    工程應用中的手勢識別需要較高的實(shí)時(shí)性和準確性,而現場(chǎng)環(huán)境通常無(wú)法提供足夠的計算能力,采用輕量化神經(jīng)網(wǎng)絡(luò )在解決了上述問(wèn)題的同時(shí),還能達到與深度神經(jīng)網(wǎng)絡(luò )相當的識別效果。為此,提出一種基于改進(jìn)輕量化神經(jīng)網(wǎng)絡(luò )的手勢識別方法。該方法改進(jìn)用于手部關(guān)鍵點(diǎn)檢測的ReXNet網(wǎng)絡(luò )結構,以改善骨骼點(diǎn)的局部關(guān)注;同時(shí)將關(guān)鍵點(diǎn)檢測損失函數MSE替換為Huber loss,以提升離群點(diǎn)的抗干擾性。實(shí)驗環(huán)境搭建基于普通單目鏡頭捕獲圖像后,經(jīng)YOLO v3手部識別模型和改進(jìn)的ReXNet關(guān)鍵點(diǎn)檢測模型,并根據約束手部骨骼關(guān)鍵點(diǎn)的向量角而定義的不同手勢,最后達到實(shí)時(shí)檢測的效果。改進(jìn)模型在RWTH公開(kāi)數據集上的測試結果表明,改進(jìn)后的手勢識別方法的檢測準確度較改進(jìn)前整體提升2.62%,達到了96.18%,且收斂速度更快。

    Abstract:

    Gesture recognition in engineering applications requires high real-time and accuracy, and the on-site environment usually cannot provide sufficient computing power. Using lightweight neural networks can solve the above problems while achieving recognition equivalent to deep neural networks Effect. To this end, a gesture recognition method based on an improved lightweight neural network is proposed. This method improves the ReXNet network structure for hand key point detection to improve the local attention of bone points; at the same time, the key point detection loss function MSE is replaced by Huber loss to improve the anti-interference of outliers. After the experimental environment is built based on the ordinary monocular lens to capture the image, the YOLO v3 hand recognition model and the improved ReXNet key point detection model are used to define different gestures according to the vector angles that constrain the key points of the hand bones, and finally achieve real-time detection. Effect. The test results of the improved model on the RWTH public data set show that the detection accuracy of the improved gesture recognition method is 2.62% higher than that before the improvement, reaching 96.18%, and the convergence speed is faster.

    參考文獻
    相似文獻
    引證文獻
引用本文

魏小玉,焦良葆,劉子恒,湯博宇,孟琳.融合YOLO v3與改進(jìn)ReXNet的手勢識別方法研究計算機測量與控制[J].,2023,31(7):278-283.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-10-22
  • 最后修改日期:2022-11-27
  • 錄用日期:2022-11-28
  • 在線(xiàn)發(fā)布日期: 2023-07-12
  • 出版日期:
文章二維碼
西丰县| 武夷山市| 玉环县| 武汉市| 泸西县| 临泉县| 衡南县| 大庆市| 紫阳县| 句容市| 苍梧县| 九台市| 南昌县| 东明县| 汕尾市| 三台县| 安阳县| 景德镇市| 阿尔山市| 乳山市| 朔州市| 蓬安县| 北京市| 项城市| 汉川市| 景宁| 巴塘县| 邻水| 嵊泗县| 吉木萨尔县| 固安县| 浙江省| 五大连池市| 成安县| 霍林郭勒市| 大埔县| 聂荣县| 阳江市| 台中县| 龙井市| 咸宁市|