国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度Q網(wǎng)絡(luò )和人工勢場(chǎng)的移動(dòng)機器人路徑規劃研究
DOI:
CSTR:
作者:
作者單位:

北京工商大學(xué) 人工智能學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP242.6

基金項目:

國家級大創(chuàng )項目(G014)


Research on Path Planning of Mobile Robot Based on Deep Q-Network and Artificial Potential Field
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    隨著(zhù)移動(dòng)機器人在各個(gè)領(lǐng)域的研究與發(fā)展,人們對移動(dòng)機器人路徑規劃的能力提出了更高的要求;為了解決傳統的深度Q網(wǎng)絡(luò )算法在未知環(huán)境下,應用于自主移動(dòng)機器人路徑規劃時(shí)存在的收斂速度慢、訓練前期產(chǎn)生較大迭代空間、迭代的次數多等問(wèn)題,在傳統DQN算法初始化Q值時(shí),加入人工勢場(chǎng)法的引力勢場(chǎng)來(lái)協(xié)助初始化環(huán)境先驗信息,進(jìn)而可以引導移動(dòng)機器人向目標點(diǎn)運動(dòng),來(lái)減少算法在最初幾輪探索中形成的大批無(wú)效迭代,進(jìn)而減少迭代次數,加快收斂速度;在柵格地圖環(huán)境中應用pytorch框架驗證加入初始引力勢場(chǎng)的改進(jìn)DQN算法路徑規劃效果;仿真實(shí)驗結果表明,改進(jìn)算法能在產(chǎn)生較小的迭代空間且較少的迭代次數后,快速有效地規劃出一條從起點(diǎn)到目標點(diǎn)的最優(yōu)路徑。

    Abstract:

    With the research and development of mobile robots in various fields, people put forward higher requirements for the ability of mobile robot path planning. So as to solve the problems of slow convergence speed, many iterations, and large iteration space in the early stage of training when the traditional deep reinforcement learning algorithm is applied to the path planning of mobile robots in an unknown environment, an artificial potential field is added when the traditional DQN algorithm initializes the Q value. The attractive field of the algorithm is used as the prior information of the initial environment, so as to guide the mobile robot to move towards the target position, reduce a large number of invalid iterations caused by the environmental exploration in the initial stage of the algorithm, thereby reducing the number of iterations and speeding up the convergence speed. Using the pytorch framework in the grid map environment to verify the path planning effect of the improved DQN algorithm with the initial gravitational potential field. The simulation results show that the improved algorithm can quickly and effectively plan an optimal path from the starting point to the target point after generating a smaller iteration space and fewer iterations.

    參考文獻
    相似文獻
    引證文獻
引用本文

王冰晨,連曉峰,顏湘,白天昕,董兆陽(yáng).基于深度Q網(wǎng)絡(luò )和人工勢場(chǎng)的移動(dòng)機器人路徑規劃研究計算機測量與控制[J].,2022,30(11):226-232.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-09-14
  • 最后修改日期:2022-09-16
  • 錄用日期:2022-09-16
  • 在線(xiàn)發(fā)布日期: 2022-11-17
  • 出版日期:
文章二維碼
耒阳市| 吉木萨尔县| 万全县| 弥勒县| 东丽区| 南岸区| 于田县| 保德县| 天柱县| 思南县| 敦化市| 怀远县| 沧源| 中西区| 墨竹工卡县| 清苑县| 澄迈县| 环江| 靖江市| 白玉县| 大城县| 双牌县| 鄯善县| 吉隆县| 临夏县| 砚山县| 大同县| 通海县| 襄垣县| 长沙市| 右玉县| 马尔康县| 南平市| 邮箱| 阿荣旗| 邵东县| 吉安市| 万宁市| 木兰县| 宣恩县| 泗水县|