国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于YOLOv5的電力線(xiàn)和桿塔實(shí)時(shí)檢測算法研究
DOI:
CSTR:
作者:
作者單位:

廣東工業(yè)大學(xué) 物理與光電工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Research on Real-time Detection Algorithm of Power Line and Pole Tower Based on YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對當前電力線(xiàn)路檢測中存在深度學(xué)習網(wǎng)絡(luò )參數量大、計算復雜度高等問(wèn)題;在YOLOv5的基礎上提出一種電力線(xiàn)和桿塔的實(shí)時(shí)檢測算法;通過(guò)減少Bottleneck數量來(lái)簡(jiǎn)化特征提取層網(wǎng)絡(luò )結構,使用深度可分離卷積技術(shù)實(shí)現模型計算量的降低;分析電力線(xiàn)目標框篩選機制,改進(jìn)(Non-Maximum Suppression)NMS算法,提升模型目標檢測精度;實(shí)驗結果表明,對Bottleneck的改進(jìn)在識別精度有所提高的情況下能有效降低模型的參數量,模型檢測準確率和召回率分別達到94%與95%,體積壓縮了20.7%,在Jetson Nano嵌入式平臺上檢測速度達到17.2 fps,對兩類(lèi)電力線(xiàn)路目標檢測達到較高的識別率和實(shí)時(shí)性,對無(wú)人機電力巡檢導航有較好的參考價(jià)值。

    Abstract:

    Aiming at the problems of large number of parameters and high computational complexity of deep learning network in current power line detection; Based on YOLOv5, a real-time detection algorithm for power lines and towers is proposed. The network structure of feature extraction layer is simplified by reducing the number of Bottleneck, and the depth-separable convolution technique is used to reduce the computational amount of model. The mechanism of power line target box screening was analyzed, and the (non-maximum Suppression) NMS algorithmwas improved to improve the model target detection accuracy. The experimental results show that the improvement of Bottleneck can effectively reduce the number of parameters of models when the recognition accuracy increases. The model detection accuracy and recall rate reach 94% and 95%, respectively, and the volume is compressed by 20.7%. The detection speed on Jetson Nano embedded platform reaches 17.2 FPS. The detection of two kinds of power line targets achieves high recognition rate and real-time performance, which has a good reference value for UAV power inspection and navigation.

    參考文獻
    相似文獻
    引證文獻
引用本文

葉樹(shù)芬,施振華,蘇成悅,梁立翀,黃海潤,關(guān)家華.基于YOLOv5的電力線(xiàn)和桿塔實(shí)時(shí)檢測算法研究計算機測量與控制[J].,2022,30(11):77-84.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-08-08
  • 最后修改日期:2022-08-25
  • 錄用日期:2022-08-26
  • 在線(xiàn)發(fā)布日期: 2022-11-17
  • 出版日期:
文章二維碼
马龙县| 丹江口市| 霞浦县| 客服| 延庆县| 青铜峡市| 太白县| 沙田区| 泰宁县| 淮阳县| 重庆市| 深水埗区| 肥乡县| 关岭| 诸城市| 楚雄市| 清丰县| 额济纳旗| 格尔木市| 孙吴县| 耒阳市| 枣阳市| 建始县| 平邑县| 莎车县| 祁阳县| 昆山市| 汉沽区| 华蓥市| 石林| 沂水县| 博客| 缙云县| 巴塘县| 博野县| 莫力| 广西| 枞阳县| 屯昌县| 东方市| 陆河县|