国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的遙感圖像微小目標檢測方法研究
DOI:
CSTR:
作者:
作者單位:

常州工業(yè)職業(yè)技術(shù)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP751

基金項目:


Research on remote sensing image micro target detection method based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    遙感圖像中含有大量的微小目標,只有準確檢測到這些微小目標,才能實(shí)現遠程目標的識別與跟蹤。為了給遠程跟蹤工作提供有效的輔助工具,以深度學(xué)習算法為技術(shù)支持,優(yōu)化設計遙感圖像微小目標檢測方法。利用硬件設備實(shí)時(shí)采集包含微小目標的遙感圖像,通過(guò)幾何校正、灰度化轉換、噪聲抑制、去霧以及圖像增強等步驟,完成初始圖像的預處理。通過(guò)前景與背景圖像的分割,選擇遙感圖像中的待檢測目標。構建深度卷積神經(jīng)網(wǎng)絡(luò )作為深度學(xué)習算法的運行環(huán)境,經(jīng)過(guò)前向傳播、反向傳播提取遙感圖像特征。最終通過(guò)特征匹配,得出包含微小目標數量以及位置坐標的檢測結果。通過(guò)性能測試實(shí)驗得出結論:與傳統遙感圖像目標檢測方法相比,優(yōu)化設計方法的查準率和查全率分別提高了6.3%和10.74%,目標位置檢測誤差得到明顯降低,且響應時(shí)間縮短了2440ms,由此證明優(yōu)化設計方法具有良好的檢測性能。

    Abstract:

    There are a large number of small targets in remote sensing images. Accurate detection of them is the basis of remote target recognition and tracking. In order to provide effective auxiliary tools for remote tracking, the micro target detection method of remote sensing image is optimized with the technical support of deep learning algorithm. The hardware equipment is used to collect the remote sensing image containing micro targets in real time, and the preprocessing of the initial image is completed through the steps of geometric correction, gray conversion, noise suppression, defogging and image enhancement. Through the segmentation of foreground and background image, the target to be detected in remote sensing image is selected. The deep convolution neural network is constructed as the operation environment of the deep learning algorithm, and the remote sensing image features are extracted through forward propagation and back propagation. Finally, through feature matching, the detection results including the number of small targets and position coordinates are obtained. Through the performance test experiment, it is concluded that compared with the traditional remote sensing image target detection method, the precision and recall of the optimal design method are increased by 6.3% and 10.74% respectively, the target position detection error is significantly reduced, and the response time is shortened by 2440ms, which proves that the optimal design method has good detection performance.

    參考文獻
    相似文獻
    引證文獻
引用本文

商俊燕.基于深度學(xué)習的遙感圖像微小目標檢測方法研究計算機測量與控制[J].,2022,30(10):57-62.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-05-31
  • 最后修改日期:2022-06-28
  • 錄用日期:2022-06-29
  • 在線(xiàn)發(fā)布日期: 2022-11-01
  • 出版日期:
文章二維碼
渑池县| 玛多县| 乌兰察布市| 贡嘎县| 曲阜市| 沁阳市| 贞丰县| 焉耆| 屏山县| 文水县| 龙江县| 克山县| 彰武县| 杂多县| 胶南市| 宁波市| 济南市| 阿瓦提县| 平原县| 阿拉尔市| 武宁县| 隆回县| 思茅市| 萨嘎县| 石家庄市| 庄河市| 鄂尔多斯市| 满洲里市| 白玉县| 合肥市| 仪征市| 安塞县| 舞阳县| 扎兰屯市| 娄底市| 乳源| 大方县| 沾益县| 翼城县| 乳山市| 福海县|