国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)YOLOv5m的弱小目標識別方法
DOI:
CSTR:
作者:
作者單位:

西安工業(yè)大學(xué)光電工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP319.4????????????? ????????????? ????????????? ?????????????

基金項目:

航空科學(xué)基金(202000190U1002)


Weak and Small Targets Recognition Method Based on Improved YOLOv5m
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對空對地觀(guān)測弱小目標識別與跟蹤技術(shù)需求,提出了一種改進(jìn)型YOLOv5m網(wǎng)絡(luò )的多目標識別檢測方法,以提升對所占像素個(gè)數小于10*10弱小目標的識別能力;分析了網(wǎng)絡(luò )結構輸入端Mosaic數據增強、Anchor計算、Focus模塊及SPP模塊對弱小目標的影響;在深度學(xué)習網(wǎng)絡(luò )Prediction層引入距離交并比非極大值抑制(DIoU-NMS)代替傳統非極大值抑制(NMS),引入距離交并比損失函數(DIoU_Loss)代替廣義化交并比損失函數(GIoU_Loss),加快邊界框回歸速率,提高定位精度,消除重疊檢測,并在網(wǎng)絡(luò )中引入4*4以上像素的目標識別層,提升對遮擋重疊弱小目標識別的準確率;實(shí)驗結果表明,改進(jìn)的深度學(xué)習網(wǎng)絡(luò )算法與經(jīng)典的YOLOv5m網(wǎng)絡(luò )相比,目標識別的均值平均精度mAP指標達到89.7%,對比原網(wǎng)絡(luò )提高了4.1%,實(shí)現了對圖像像素個(gè)數小于10*10的弱小目標高精度識別,有效提升了深度學(xué)習網(wǎng)絡(luò )對弱小目標的適應性和應用價(jià)值。

    Abstract:

    Aiming at the needs of air-to-earth observation weak and small target recognition and tracking technology, an improved multi-target recognition and detection method of YOLOv5m network is proposed to improve the recognition ability of weak and small targets with less than 10*10 pixels; The influence of Mosaic data enhancement, Anchor calculation, Focus module and SPP module on weak and small targets at the input end of the network structure is analyzed; In the Prediction layer of the deep learning network, the distance intersection over union non-maximum suppression (DIoU-NMS) is introduced to replace the traditional non-maximum suppression (NMS), and the distance intersection over union loss function (DIoU_Loss) is introduced to replace the generalized intersection over union loss function (GIoU_Loss), speed up the bounding box regression rate, improve the positioning accuracy, eliminate overlapping detection, and introduce a target recognition layer with more than 4*4 pixels in the network to improve the accuracy of occlusion overlapping weak and small targets; The experimental results show that, compared with the classic YOLOv5m network, the improved deep learning network algorithm achieves an average average precision mAP index of 89.7%, which is 4.1% higher than the original network, and realizes the image pixel number less than 10*10. The high-precision identification of weak and small targets effectively improves the adaptability and application value of the deep learning network to weak and small targets.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊文濤,張維光.基于改進(jìn)YOLOv5m的弱小目標識別方法計算機測量與控制[J].,2022,30(12):218-223.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-05-05
  • 最后修改日期:2022-05-31
  • 錄用日期:2022-06-01
  • 在線(xiàn)發(fā)布日期: 2022-12-22
  • 出版日期:
文章二維碼
什邡市| 新昌县| 苏州市| 广安市| 镇平县| 密云县| 通州市| 昆山市| 十堰市| 五华县| 容城县| 孝义市| 安庆市| 阿拉善左旗| 辽阳市| 景东| 皋兰县| 山丹县| 桐城市| 栾川县| 白河县| 朔州市| 九江县| 曲松县| 墨竹工卡县| 甘洛县| 榆林市| 巴南区| 化德县| 田东县| 崇仁县| 华池县| 霸州市| 五大连池市| 麻栗坡县| 凤山市| 岚皋县| 武汉市| 莎车县| 五寨县| 兴安盟|