国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于決策的目標檢測器黑盒對抗攻擊方法
DOI:
CSTR:
作者:
作者單位:

哈爾濱工業(yè)大學(xué) 電子與信息工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(62171156)


Decision-based Black Box Adversarial Attack Method for Target Detector
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    深度神經(jīng)網(wǎng)絡(luò )在目標檢測領(lǐng)域有大量的應用已經(jīng)落地,然而由于深度神經(jīng)網(wǎng)絡(luò )本身存在不可解釋性等技術(shù)上的不足,導致其容易受到外界的干擾而失效,充分研究對抗攻擊方法有助于挖掘深度神經(jīng)網(wǎng)絡(luò )易失效的原因以提升其魯棒性。目前大多數對抗攻擊方法都需要使用模型的梯度信息或模型輸出的置信度信息,而工業(yè)界應用的目標檢測器通常不會(huì )完全公開(kāi)其內部信息和置信度信息,導致現有的白盒攻擊方法不再適用。為了提升工業(yè)目標檢測器的魯棒性,提出一種基于決策的目標檢測器黑盒對抗攻擊方法,其特點(diǎn)是不需要使用模型的梯度信息和置信度信息,僅利用目標檢測器輸出的檢測框位置信息,策略是從使目標檢測器定位錯誤的角度進(jìn)行攻擊,通過(guò)沿著(zhù)對抗邊界進(jìn)行迭代搜索的方法尋找最優(yōu)對抗樣本從而實(shí)現高效的攻擊。實(shí)驗結果表明所提出的方法使典型目標檢測器Faster R-CNN在VOC2012數據集上的mAR從0.636降低到0.131,mAP從0.801降低到0.071,有效降低了目標檢測器的檢測能力,成功實(shí)現了針對目標檢測器的黑盒攻擊。

    Abstract:

    Deep neural network has been widely applied in the field of object detection. However, due to the poor interpretability and other technical deficiencies of deep neural network, it is easy to be invalidated by external interference. Full research on adversarial attack methods is helpful to explore the reasons for the invalidation of deep neural network and improve its robustness. At present, most of the adversarial attack methods need to use the gradient information of the model or the confidence information of the model output, but the object detectors used in the industry usually do not fully disclose their internal information and confidence information, so the existing white box attack methods are no longer applicable. To enhance the robustness of industrial object detector, this paper proposes a decision-based black box adversarial attack method for object detector. The characteristics of this method does not need to use gradient information and confidence information of the model, only the use of the object detector output detection box position information. The strategy of this method is to make the object detector locate wrong and attacks it, and to find the optimal adversarial examples by iterative search along the adversarial boundary so as to achieve efficient attack. Experimental results show that the proposed method reduces mAR from 0.636 to 0.131 and mAP from 0.801 to 0.071 on VOC2012 data set of typical object detector Faster R-CNN, effectively reducing the detection ability of object detector and successfully achieving black box attack on the object detector.

    參考文獻
    相似文獻
    引證文獻
引用本文

付平,郭玲,劉冰,朱玉晴,鳳雷.基于決策的目標檢測器黑盒對抗攻擊方法計算機測量與控制[J].,2022,30(7):255-260.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-05-03
  • 最后修改日期:2022-05-07
  • 錄用日期:2022-05-09
  • 在線(xiàn)發(fā)布日期: 2022-07-19
  • 出版日期:
文章二維碼
馆陶县| 昌宁县| 汶上县| 南木林县| 政和县| 临猗县| 泉州市| 丹寨县| 吴忠市| 峡江县| 博白县| 沁阳市| 定陶县| 莱西市| 红安县| 金沙县| 长沙县| 伊宁市| 甘谷县| 化德县| 西华县| 从化市| 沙坪坝区| 安庆市| 淮北市| 芮城县| 蒲城县| 大新县| 微山县| 二手房| 德化县| 荔波县| 逊克县| 宣恩县| 望江县| 邹平县| 望城县| 惠来县| 孙吴县| 桓台县| 石渠县|