国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)圖注意機制的網(wǎng)絡(luò )嵌入方法研究及應用
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué)草堂校區

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目),陜西省自然科學(xué)基金, 陜西省住房城鄉建設科技計劃項目


Research and Application of Network Embedding Method Based on Improved Graph Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    網(wǎng)絡(luò )已被廣泛用作抽象現實(shí)世界系統以及組織實(shí)體之間關(guān)系的數據結構;網(wǎng)絡(luò )嵌入模型是將網(wǎng)絡(luò )中的節點(diǎn)映射為連續向量空間表示的強大工具;基于圖卷積(Graph convolutional neural, GCN)的網(wǎng)絡(luò )嵌入方法因受其模型迭代過(guò)程參數隨機優(yōu)化和聚合函數的影響,容易造成原始節點(diǎn)特征信息丟失的問(wèn)題;為有效提升網(wǎng)絡(luò )嵌入效果,針對于圖神經(jīng)網(wǎng)絡(luò )模型在網(wǎng)絡(luò )嵌入中節點(diǎn)表征學(xué)習的局限性,提出了一種基于二階鄰域基數保留策略的圖注意力網(wǎng)絡(luò )SNCR-GAT(Second-order Neighborhood Cardinality Retention strategy Graph attention network),通過(guò)聚合二階鄰域特征基數的方式,解決網(wǎng)絡(luò )節點(diǎn)潛在特征學(xué)習過(guò)程中重要信息保留問(wèn)題;通過(guò)在節點(diǎn)分類(lèi)和可視化兩個(gè)網(wǎng)絡(luò )嵌入應用任務(wù)上進(jìn)行實(shí)驗,結果表明,SNCR-GAT模型在網(wǎng)絡(luò )嵌入上的性能表現相比較基準方法更具優(yōu)越性。

    Abstract:

    Networks have been widely used as data structures for abstracting real-world systems and for organizing relationships between entities. The network embedding model is a powerful tool to map the nodes in the network into a continuous vector space representation. The network embedding method based on Graph convolutional neural (GCN) is easily affected by the random optimization of parameters in the model iteration process and the aggregation function. The problem of loss of original node feature information. In order to effectively improve the network embedding effect, a graph attention network based on the second-order neighborhood cardinality retention strategy is proposed for the limitation of the graph neural network model in the node representation learning in the network embedding. (SNCR-GAT, Second-order Neighborhood Cardinality Retention strategy Graph attention network), by aggregating the second-order neighborhood feature cardinality, it solves the problem of important information retention in the process of latent feature learning of network nodes; by classifying and visualizing two networks in nodes Experiments are carried out on the actual task of embedding, and the results show that the performance of the SNCR-GAT model on network embedding is more superior than the baseline method.

    參考文獻
    相似文獻
    引證文獻
引用本文

韓津津,李智杰,李昌華,張頡.基于改進(jìn)圖注意機制的網(wǎng)絡(luò )嵌入方法研究及應用計算機測量與控制[J].,2022,30(9):207-212.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-04-27
  • 最后修改日期:2022-05-24
  • 錄用日期:2022-05-24
  • 在線(xiàn)發(fā)布日期: 2022-09-16
  • 出版日期:
文章二維碼
科技| 二连浩特市| 金沙县| 宁南县| 江口县| 连江县| 富宁县| 西峡县| 昌宁县| 连城县| 乐平市| 崇阳县| 甘谷县| 十堰市| 寿宁县| 崇仁县| 灌云县| 高邮市| 仁寿县| 晋江市| 宜君县| 涟水县| 大方县| 清苑县| 葫芦岛市| 余干县| 潮安县| 库尔勒市| 年辖:市辖区| 铁岭县| 黄陵县| 鹰潭市| 左贡县| 故城县| 临湘市| 江津市| 中江县| 宜昌市| 葫芦岛市| 荆门市| 泾源县|