国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于PSO-ELM算法的紅外目標模擬器校準數據擬合方法研究
DOI:
CSTR:
作者:
作者單位:

海軍航空大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TN215

基金項目:


Research on Calibration Data Fitting Algorithm of Infrared Target Simulator Based on PSO-ELM Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提高紅外目標模擬器校準數據的擬合精度,對于紅外目標的輻射照度等輻射特性的測量有著(zhù)重要意義;針對校準數據具有很強的非線(xiàn)性,傳統的擬合算法精度不高的問(wèn)題,引入一種基于粒子群算法優(yōu)化的極限學(xué)習機算法(PSO-ELM),以標準黑體輻射溫度作為輸入因子,以MCT探測器實(shí)際測量出的輻射照度作為輸出因子,建立PSO-ELM模型,利用粒子群算法(PSO)對連接隱藏神經(jīng)元和輸入層的權值和隱藏神經(jīng)元閾值進(jìn)行優(yōu)化,擬合出輸入參數和輸出參數之間的非線(xiàn)性關(guān)系;這兩個(gè)參數的優(yōu)化提高了極限學(xué)習機算法(ELM)的性能,該方法的主要優(yōu)點(diǎn)是具有較強的容錯性、較好的對復雜非線(xiàn)性數據處理性能和ELM算法參數設置上的優(yōu)化機制;通過(guò)與GA-ELM模型、ELM模型進(jìn)行對,驗證了與傳統數據擬合方法相比,基于PSO-ELM的方法擬合精度有了很大提高,為紅外目標模擬器校準數據擬合提供了新的方法。

    Abstract:

    Improving the fitting accuracy of the calibration data of the infrared target simulator is of great significance for the measurement of the irradiance and other radiation characteristics of the infrared target. In view of the strong nonlinearity of the calibration data of the infrared standard simulator and the poor accuracy of the traditional fitting algorithm, a particle swarm optimization extreme learning machine (PSO-ELM) was introduced in this paper. Taking the standard black body radiation temperature as the input factor and the irradiance actually measured by the MCT detector as the output factor, the PSO-ELM-based method was established. In the PSO-ELM-based method, the connection weight matrix from the input layer to the hidden layer and the bias vector of the hidden layer were optimized by the PSO, and A nonlinear relationship between input parameters and output parameters was fitted. The optimization of these two parameters has greatly improved the predictive ability of original ELM. Main advantages of this method are that it has strong fault tolerance, better processing performance for complex nonlinear data, and the optimization mechanism in a kernel parameter setting of ELM. Comparing with genetic algorithm extreme learning machine (GA-ELM), extreme learning machine (ELM), it is verified the superior performance of the PSO-ELM-based method compared to the conventional data fitting method, which provided a new method for infrared target simulator calibration data fitting.

    參考文獻
    相似文獻
    引證文獻
引用本文

張馨怡,陳振林.基于PSO-ELM算法的紅外目標模擬器校準數據擬合方法研究計算機測量與控制[J].,2022,30(7):207-212.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-03-30
  • 最后修改日期:2022-04-04
  • 錄用日期:2022-04-06
  • 在線(xiàn)發(fā)布日期: 2022-07-19
  • 出版日期:
文章二維碼
桑植县| 襄汾县| 宣化县| 临西县| 驻马店市| 麦盖提县| 杭州市| 丁青县| 竹北市| 玛多县| 抚宁县| 静乐县| 奈曼旗| 庆城县| 盐边县| 涟源市| 北宁市| 吴堡县| 乌审旗| 余江县| 凤凰县| 高邑县| 汝城县| 壶关县| 南召县| 榆树市| 荔浦县| 丽水市| 扎兰屯市| 德格县| 杨浦区| 塔城市| 清镇市| 昔阳县| 全椒县| 靖安县| 冀州市| 越西县| 灌云县| 长沙县| 苗栗县|