国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習OFDM信道補償技術(shù)硬件實(shí)現
DOI:
CSTR:
作者:
作者單位:

1.航天工程大學(xué) 研究生院;2.航天工程大學(xué) 電子與光學(xué)工程系

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TN914

基金項目:


Hardware Implementation of Deep Learning Based OFDM Channel Compensation Technique
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決部分高性能深度學(xué)習神經(jīng)網(wǎng)絡(luò )因存在復雜度高及計算量大等缺陷在嵌入式設備中應用效果不理想的問(wèn)題;以小型化集成智能無(wú)線(xiàn)電設備AIR-T為平臺實(shí)現了基于深度學(xué)習的OFDM信道補償技術(shù);在FPGA芯片上不僅實(shí)現了OFDM信號傳輸系統模塊,也實(shí)現了傳統信道估計與均衡模塊,模塊對數據進(jìn)行預處理減輕神經(jīng)網(wǎng)絡(luò )工作量以完成神經(jīng)網(wǎng)絡(luò )信道補償技術(shù)模塊在Jetson TX2平臺GPU上的高效實(shí)現;由實(shí)驗記錄神經(jīng)網(wǎng)絡(luò )訓練過(guò)程中的計算復雜度和參數擬合速度得知,傳統信道估計與均衡模塊有效降低了網(wǎng)絡(luò )訓練時(shí)的運算次數;由測試性能方面可知,經(jīng)過(guò)神經(jīng)網(wǎng)絡(luò )信道補償后的數據誤碼率比之前傳統信道估計與均衡后的誤碼率有明顯降低;

    Abstract:

    In order to solve the problem that some high-performance deep learning neural networks are not ideal for application in embedded devices due to the defects of high complexity and large computation. Deep learning-based Orthogonal Frequency Division Multiplexing(OFDM) channel compensation technology is implemented on the Artificial Intelligence Radio-Transceiver(AIR-T), a miniaturized integrated smart radio device, as a platform. Not only the OFDM signal transmission system module, but also the conventional channel estimation and equalization module are implemented on the Field Programmable Gate Array(FPGA) chip.These modules preprocesses the data to reduce the workload of the neural network in order to complete the efficient implementation of the neural network channel compensation technology module on the graphics processing unit(GPU) of Jetson TX2 platform. The computational complexity and parameter fitting speed of the neural network training process are recorded, and the conventional channel estimation and equalization module effectively reduces the number of operations during the network training. From the tested performance aspects, it can be seen that the data BER after the neural network channel compensation is significantly lower than the BER after the previous conventional channel estimation and equalization.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉仲謙,丁丹,薛乃陽(yáng).基于深度學(xué)習OFDM信道補償技術(shù)硬件實(shí)現計算機測量與控制[J].,2022,30(6):150-156.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-03-22
  • 最后修改日期:2022-04-15
  • 錄用日期:2022-04-18
  • 在線(xiàn)發(fā)布日期: 2022-06-21
  • 出版日期:
文章二維碼
金坛市| 沁源县| 建德市| 南京市| 九寨沟县| 庐江县| 梅州市| 闸北区| 来宾市| 洛隆县| 宜兰市| 湟中县| 柳林县| 永川市| 三亚市| 依安县| 囊谦县| 玉环县| 阆中市| 民和| 邢台县| 五莲县| 元氏县| 金寨县| 卓资县| 新竹市| 吉木萨尔县| 寿阳县| 遵化市| 都江堰市| 乐清市| 青川县| 兰考县| 云南省| 榆树市| 荔浦县| 武强县| 霍山县| 青河县| 莒南县| 宁德市|