国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

Res2Net融合注意力學(xué)習的YOLOv4目標檢測算法
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

陜西省自然科學(xué)科學(xué)基礎研究計劃資助項目(編號:2018JM6080)。


YOLOv4 Object detection algorithm based on Res2Net fusing with attention learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    摘要:針對傳統目標檢測算法容易出現漏檢、誤檢或者有遮擋物時(shí)檢測困難等問(wèn)題,提出一種Res2Net融合注意力學(xué)習的YOLOv4(Res2Net fusion with attention learning YOLOv4, RFAL YOLOv4)目標檢測模型。首先為了獲取更多特征圖語(yǔ)義信息,通過(guò)在一個(gè)殘差塊內構造層次化的類(lèi)殘差連接,引入Res2Net替換原YOLOv4主干網(wǎng)絡(luò )中的ResNet殘差網(wǎng)絡(luò )結構,可以獲取到更細小的特征,同時(shí)也增加了模型感受野。其次將Res2Net與注意力機制相融合,獲取關(guān)鍵特征信息,減輕因優(yōu)化主干網(wǎng)絡(luò )帶來(lái)計算量增加的負擔。最后通過(guò)改進(jìn)CIOU損失,降低預測框與真實(shí)框之間的誤差值,有效的解決因目標過(guò)小或者有遮擋時(shí)模型出現漏檢誤檢等問(wèn)題。在公開(kāi)的PASCAL VOC數據集上進(jìn)行驗證,結果表明:RFAL YOLOv4模型的mAP達到了79.5%,比原模型提升了5.5%,改進(jìn)后的模型具有較高的魯棒性。

    Abstract:

    Abstract: Aiming at the problems of missed detection, false detection and difficult detection with occlusions in traditional object detection algorithms, A Res2Net fusing with attention learning YOLOv4 (Res2Net fusing with attention learning YOLOv4,RFAL YOLOv4) object detection model is proposed. Firstly, in order to increase the receptive field of the model and obtain more semantic information of the feature map, Res2Net is introduced to replace the ResNet residual network structure in the original YOLOv4 backbone network, by constructing a hierarchical class residual connection in a residual block, the model can obtain finer features. Secondly the attention mechanism is introduced to obtain the key feature information, and the residual network is integrated with the attention mechanism to reduce the burden of increased computation caused by optimizing the backbone network. Finally, the CIOU loss is improved to reduce the error between the prediction box and the real box, and the problem of missed or false detection with occlusions has been effectively solved. The public Pascal VOC data set is used to verify the improved model. The results show that the map of RFAL YOLOv4 model reaches 79.5%, which is 5.5% higher than the original model. It is proved that the improved model has better robustness.

    參考文獻
    相似文獻
    引證文獻
引用本文

張翔,劉振凱,葉娜,趙妍禎. Res2Net融合注意力學(xué)習的YOLOv4目標檢測算法計算機測量與控制[J].,2022,30(9):213-220.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-02-28
  • 最后修改日期:2022-04-11
  • 錄用日期:2022-04-12
  • 在線(xiàn)發(fā)布日期: 2022-09-16
  • 出版日期:
文章二維碼
老河口市| 福鼎市| 郁南县| 伊宁县| 巧家县| 梁平县| 许昌县| 通渭县| 宣城市| 甘洛县| 黔南| 新竹县| 温州市| 丰顺县| 平邑县| 冷水江市| 淮滨县| 都昌县| 惠水县| 姜堰市| 商水县| 南宁市| 康定县| 长沙市| 龙泉市| 崇义县| 襄樊市| 宝山区| 乌审旗| 格尔木市| 泌阳县| 临夏县| 娱乐| 深州市| 淮安市| 临安市| 云和县| 安西县| 德安县| 北碚区| 綦江县|