国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

結合多尺度與可變形卷積的自監督圖像特征點(diǎn)提取網(wǎng)絡(luò )
DOI:
CSTR:
作者:
作者單位:

南京航空航天大學(xué)自動(dòng)化學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目)


A Self-supervised Feature Points Extraction Networks based on Multi-scale and Deformable Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    特征點(diǎn)提取是圖像處理領(lǐng)域的一個(gè)重要方向,在視覺(jué)導航、圖像匹配、三維重建等領(lǐng)域具有廣泛的應用價(jià)值。基于卷積神經(jīng)網(wǎng)絡(luò )的特征點(diǎn)提取方法是目前的主流方法,但由于傳統卷積層的感受野大小不變、采樣區域的幾何結構固定,在尺度、視角和光照變化較大的情況下,特征點(diǎn)提取的精度和魯棒性較差。為解決以上問(wèn)題提出了一種結合多尺度與可變形卷積的自監督特征點(diǎn)提取網(wǎng)絡(luò )。本文以L(fǎng)2-NET為網(wǎng)絡(luò )骨干,在深層網(wǎng)絡(luò )中引入多尺度卷積核,增強網(wǎng)絡(luò )的多尺度特征提取能力,獲得細粒度尺度信息的特征圖;使用單應矩陣約束的可變形卷積以提取不規則的特征區域,同時(shí)降低運算量,并采用歸一化約束單應矩陣的求解,均衡不同采樣點(diǎn)對結果的影響,配合在網(wǎng)絡(luò )中增加的卷積注意力機制和坐標注意力機制,提升網(wǎng)絡(luò )的特征提取能力。文章在HPatches數據集上進(jìn)行了對比試驗和消融實(shí)驗,與R2D2等7種主流方法進(jìn)行對比,本文方法的特征點(diǎn)提取效果最好,相比于次優(yōu)數據,特征點(diǎn)重復度指標(Rep)提升了約1%,匹配分數(M.s.)提升了約1.3%,平均匹配精度(MMA)提高了約0.4%。本文提出的方法充分利用了可變形卷積提供的深層信息,融合了不同尺度的特征,使特征點(diǎn)提取結果更加準確和魯棒。

    Abstract:

    Feature point extraction is an important direction in the field of image processing. It has a wide range of applications in the fields of visual navigation, image matching, 3D reconstruction and so on. The feature point extraction method based on convolution neural network is the mainstream method at present. However, due to the constant size of the receptive field of the traditional convolution layer and the fixed geometric structure of the sampling area, the accuracy and robustness of feature point extraction are poor when the scale, viewing angle and illumination change greatly. In this paper, a self supervised feature point extraction network combining multi-scale and deformable convolution is proposed. Taking l2-net as the backbone of the network, this paper introduces multi-scale convolution kernel into the deep network to enhance the multi-scale feature extraction ability of the network and obtain the feature map of fine-grained scale information; Deformable convolution constrained by homography matrix is used to extract irregular feature regions, reduce the amount of computation, and solve the normalized constrained homography matrix to balance the impact of different sampling points on the results, cooperate with the convolution attention mechanism and coordinate attention mechanism added in the network to improve the feature extraction ability of the network. In this paper, comparative experiments and ablation experiments are carried out on hpatches data set. Compared with seven mainstream methods such as R2D2, the feature point extraction effect of this method is the best. Compared with suboptimal data, the feature point repeatability index (REP) is improved by about 1%, the matching score (M.S.) is improved by about 1.3%, and the average matching accuracy (MMA) is improved by about 0.4%. The method proposed in this paper makes full use of the deep information provided by deformable convolution and integrates the features of different scales to make the feature point extraction results more accurate and robust.

    參考文獻
    相似文獻
    引證文獻
引用本文

張少鵬,周大可.結合多尺度與可變形卷積的自監督圖像特征點(diǎn)提取網(wǎng)絡(luò )計算機測量與控制[J].,2022,30(4):222-228.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-01-28
  • 最后修改日期:2022-02-21
  • 錄用日期:2022-02-21
  • 在線(xiàn)發(fā)布日期: 2022-04-21
  • 出版日期:
文章二維碼
图木舒克市| 西畴县| 六安市| 白玉县| 搜索| 开鲁县| 永顺县| 朝阳区| 凤庆县| 县级市| 华池县| 乐平市| 呼伦贝尔市| 稷山县| 达拉特旗| 济阳县| 宁南县| 迁西县| 文成县| 右玉县| 温宿县| 改则县| 保德县| 临安市| 修武县| 灯塔市| 奉贤区| 乐陵市| 佛冈县| 阿荣旗| 绵竹市| 滕州市| 浮山县| 贵港市| 盱眙县| 潞西市| 甘肃省| 华池县| 通城县| 荆门市| 东台市|