国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

機場(chǎng)不正常事件實(shí)體檢測與識別方法研究
DOI:
CSTR:
作者:
作者單位:

中國民航大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

華東空管局科技項目(KJ2101)。


Research on Detection and Recognition Method of Airport Abnormal Event Entities
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    民航安全自愿報告系統收集的海量故障報告以非結構化文本形式存儲,不便于相關(guān)人員針對大量不正常事件加以分析并采取控制措施;命名實(shí)體識別技術(shù)可以將海量非結構化文本中的關(guān)鍵要素進(jìn)行檢測和識別,抽取成類(lèi)別分明的結構化信息,作為進(jìn)一步分析不正常事件并加以控制的基礎工作;將機場(chǎng)不正常事件報告作為研究對象,提出了一種基于神經(jīng)網(wǎng)絡(luò )的中文命名實(shí)體識別模型,對文本進(jìn)行了結構化處理;針對隨機選用的訓練樣本一些實(shí)體類(lèi)別分布比較稀疏和人工標注費時(shí)費力的問(wèn)題,提出了基于模型預測分數的樣本選擇策略,實(shí)現了預標注樣本的高效篩選;經(jīng)過(guò)實(shí)驗驗證,該模型與BiLSTM_CRF模型、BiLSTM_self-attention_CRF模型相比F1值均提高了約6個(gè)百分點(diǎn),該樣本選擇策略明顯提高了人工標注效率,篩選出足夠多的含有稀疏實(shí)體的樣本。

    Abstract:

    The massive reports of fault events collected by the civil aviation safety reporting system are stored in the form of unstructured texts, which are not convenient for the relevant personnel to analyze and take control measures for a large number of abnormal events. Named entity recognition technology can detect and identify the key elements in the massive unstructured texts and extract them into structured information with clear categories, which can be used as the foundation work for further analysis and control of abnormal events. As the Airport abnormal events reports are taken as the research object, a neural network-based Chinese named entity recognition model is proposed to structure the texts. For the problems of sparse distribution of some entity categories of randomly selected training samples and time-consuming and laborious manual labeling, a sample selection strategy based on model prediction scores is proposed to achieve efficient screening of pre-labeled samples. After experimental validation, the model improves the F1 value by about 6 percentage points compared with the BiLSTM_CRF model and BiLSTM_self-attention_CRF model, and this sample selection strategy significantly improves the manual annotation efficiency and screens out enough samples containing sparse entities.

    參考文獻
    相似文獻
    引證文獻
引用本文

侯啟真,袁天一,王羅平.機場(chǎng)不正常事件實(shí)體檢測與識別方法研究計算機測量與控制[J].,2022,30(7):62-69.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-01-19
  • 最后修改日期:2022-02-20
  • 錄用日期:2022-02-21
  • 在線(xiàn)發(fā)布日期: 2022-07-19
  • 出版日期:
文章二維碼
陇川县| 宁蒗| 宁强县| 塘沽区| 丰镇市| 石屏县| 迭部县| 大兴区| 汽车| 永城市| 宜章县| 嘉祥县| 台湾省| 千阳县| 闽清县| 化州市| 台州市| 连山| 萝北县| 临清市| 林周县| 富顺县| 两当县| 越西县| 江油市| 新干县| 五峰| 玉林市| 双峰县| 巴彦县| 阿克陶县| 平遥县| 龙口市| 奎屯市| 海兴县| 舒城县| 大安市| 鄂托克旗| 当阳市| 新晃| 玉龙|