国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

魯棒邊緣粒子濾波及在目標跟蹤中應用
DOI:
CSTR:
作者:
作者單位:

哈爾濱工程大學(xué) 數學(xué)科學(xué)學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP29

基金項目:

國家自然科學(xué)基金(61773133)


Robust Marginalized Particle Filter and Its Application in Target Tracking
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    邊緣粒子濾波是組合導航和目標跟蹤中狀態(tài)估計的高效方法。本文目的是研究附加量測噪聲具有時(shí)變未知方差的魯棒邊緣粒子濾波的算法并對算法仿真驗證。設計方法是使用Rao–Blackwellised原則實(shí)現混合模型中狀態(tài)降維,然后狀態(tài)與量測方差同時(shí)分別估計;量測分布模型設置為具有魯棒性質(zhì)的學(xué)生t分布,通過(guò)這種量測似然模型得到粒子權值;變分推斷方法加入混合濾波方案進(jìn)行量測噪聲方差參數的實(shí)時(shí)遞推估計。重采樣階段粒子權值與狀態(tài)及噪聲參數一起進(jìn)行重采樣,結果是給出狀態(tài)與噪聲參數估計的魯棒邊緣粒子濾波。通過(guò)對常速目標運動(dòng)跟蹤模型量測噪聲方差漸變和突變兩種情況的仿真設置分析,驗證了所提算法在量測方差變化情況下性能優(yōu)于邊緣粒子濾波算法的結論。

    Abstract:

    Marginalized particle filter is an efficient estimation method for navigation and target tracking. The purpose of this paper is to study the Marginalized filter algorithm with time-varying unknown measurement noise variance. The design method is to achieve state dimensionality reduction and estimation of state and measurement variance respectively by using Rao–Blackwellised idea. The measurement distribution model is set as the robust student t-distribution, and the particle weights are obtained through the measurement likelihood model. In this paper, a real-time recursive estimation of the variance parameters of measurement noise is performed by combining the mixed filtering scheme with the Variational inference method. In the resampling stage, the particle weights are resampled together with the state and noise parameters, as a result, robust marginalized particle filter is presented after the state and noise parameters are estimated. Through the simulation analysis of two time-varying cases of gradual change and abrupt change of measurement noise variance of the given target motion model, the conclusion that the performance of the proposed algorithm is better than that of the marginalized particle filter in the case of time-varying measurement variance is verified.

    參考文獻
    相似文獻
    引證文獻
引用本文

王宗原,沈繼紅,周衛東.魯棒邊緣粒子濾波及在目標跟蹤中應用計算機測量與控制[J].,2021,29(12):209-214.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-05-19
  • 最后修改日期:2021-06-30
  • 錄用日期:2021-06-23
  • 在線(xiàn)發(fā)布日期: 2021-12-24
  • 出版日期:
文章二維碼
玉溪市| 梁平县| 大新县| 台中市| 夏河县| 江门市| 盘山县| 开江县| 祁门县| 溆浦县| 夏河县| 巴彦淖尔市| 武陟县| 金华市| 曲周县| 东兴市| 连南| 峡江县| 宁河县| 德江县| 永嘉县| 高州市| 静宁县| 鄂伦春自治旗| 华宁县| 礼泉县| 大连市| 镇宁| 芒康县| 辰溪县| 太和县| 叶城县| 开远市| 张家港市| 贵定县| 隆子县| 宁晋县| 开化县| 宁武县| 长阳| 涿州市|