国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習的盲道障礙物檢測算法研究
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué) 信息與控制工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391

基金項目:

國家自然科學(xué)基金(51678470)


Research on Obstacle Detection Algorithm of Blind Path based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對盲人出行時(shí)盲道場(chǎng)景復雜度高,已有目標檢測算法對遠距離障礙物以及條形障礙物特征提取困難,造成漏檢等問(wèn)題提出改進(jìn)。針對條形障礙物檢測增加非對稱(chēng)卷積模塊(ACB),強化網(wǎng)絡(luò )在垂直與水平方向的特征提取;構建混合池化模塊,將條形池化引入網(wǎng)絡(luò )與金字塔池化融合為混合池化模塊(MPM),增強網(wǎng)絡(luò )對長(cháng)條形與非長(cháng)條形障礙物檢測效果;網(wǎng)絡(luò )末端改變特征融合方式,低級特征與高級特征相乘形式以加強復雜場(chǎng)景下盲道障礙物識別。實(shí)驗結果表明,在盲道障礙物數據集上,改進(jìn)算法對比YOLO V4在多個(gè)評價(jià)指標上都有提升;實(shí)際場(chǎng)景測試中對遠距離障礙物以及條形障礙物檢測的檢測精度提升明顯。

    Abstract:

    In view of the high complexity of blind road scene when blind people travel, the existing target detection algorithm is difficult to extract the features of long-distance obstacles and strip obstacles, resulting in missed detection and other problems. Asymmetric convolution module (ACB) was added for bar obstacle detection to strengthen feature extraction in vertical and horizontal directions. A hybrid pooling module was constructed. Strip pooling was introduced into the network and pyramidal pooling was integrated into a hybrid pooling module (MPM) to enhance the detection effect of the network on the long and non-long obstacles. At the end of the network, the fusion mode of features is changed, and the multiplication form of low-level features and advanced features is used to strengthen blind obstacle recognition in complex scenes. The experimental results show that, compared with YOLO V4, the improved algorithm has improved in multiple evaluation indexes in the blind obstacle data set. In the actual scene test, the detection accuracy of long-distance obstacles and strip obstacles is improved obviously.

    參考文獻
    相似文獻
    引證文獻
引用本文

段中興,王劍,丁青輝,溫倩.基于深度學(xué)習的盲道障礙物檢測算法研究計算機測量與控制[J].,2021,29(12):27-32.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-04-07
  • 最后修改日期:2021-05-14
  • 錄用日期:2021-05-20
  • 在線(xiàn)發(fā)布日期: 2021-12-24
  • 出版日期:
文章二維碼
个旧市| 潍坊市| 磴口县| 乌拉特中旗| 平顺县| 万宁市| 馆陶县| 休宁县| 芜湖市| 横山县| 华宁县| 龙里县| 临桂县| 万盛区| 巴彦县| 潞西市| 新巴尔虎右旗| 浦江县| 龙川县| 竹北市| 永年县| 科技| 三穗县| 益阳市| 黄浦区| 鸡泽县| 丰台区| 星子县| 新竹市| 乌拉特前旗| 家居| 宝坻区| 东阳市| 黄骅市| 湟中县| 资阳市| 微山县| 尚义县| 历史| 忻州市| 大庆市|