国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

并聯(lián)機器人視覺(jué)盲區末端位姿檢測方法
DOI:
CSTR:
作者:
作者單位:

江蘇大學(xué) 電氣信息工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP242.2

基金項目:

國家自然科學(xué)基金資助項目(51375210);鎮江市重點(diǎn)研發(fā)計劃(GZ2018004);江蘇高校優(yōu)勢學(xué)科建設工程資助項目(蘇政辦發(fā)[2014]37號)。


Pose detection for visual blindness of parallel robot
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為解決并聯(lián)機器人末端執行器受機構支路遮擋造成的雙目視覺(jué)盲區末端位姿錯誤檢測問(wèn)題,提出一種運動(dòng)學(xué)正解結合混合優(yōu)化RBF神經(jīng)網(wǎng)絡(luò )(RBFNN)誤差補償的視覺(jué)盲區末端位姿檢測方法。首先在非視覺(jué)盲區采集RBFNN訓練樣本,其中運動(dòng)學(xué)正解為輸入樣本,運動(dòng)學(xué)正解和視覺(jué)檢測位姿的差值為輸出樣本;然后進(jìn)行訓練,并采用GWO(Grey Wolf Optimization)算法和LM(Levenberg-Marquardt)算法混合優(yōu)化權值;最后將訓練好的網(wǎng)絡(luò )用于視覺(jué)盲區,通過(guò)對運動(dòng)學(xué)正解進(jìn)行誤差補償以提高末端位姿檢測精度。實(shí)驗結果表明,與未補償的檢測方法相比,混合優(yōu)化RBFNN補償后的末端位姿檢測方法,其末端位姿分量x,y,z,γ的誤差平均絕對值分別降低了54.4%、67.7%、54.7%和52.9%,誤差標準差分別降低了52.9%、62.8%、51.9%和58.8%,驗證了所提方法的有效性。

    Abstract:

    In the pose detection for a parallel robot based on binocular vision, error detection can be caused by end-effector being obscured by the branch of the mechanism. To solve the problem, a pose detection method for visual blindness based on the direct kinematics compensated by a hybrid optimization RBF neural network (RBFNN) is proposed. Firstly, RBFNN training samples are collected in non-visual blindness, where the direct kinematics is the input sample, and the difference value between direct kinematics and pose detected by binocular vision is the output sample. Then, Grey Wolf Optimization (GWO) algorithm and Levenberg-Marquardt (LM) algorithm optimize the weights in the training process. Finally, the hybrid optimized RBFNN having been trained is applied to compensate the error of direct kinematics to improve the accuracy of pose detection for visual blindness. Experimental results show that compared with the uncompensated pose detection method, when the pose detection method compensated by a hybrid optimization RBFNN is applied, the mean absolute value of error for pose component x, pose component y, pose component z and pose component γ are reduced by 54.4%, 67.7%, 54.7% and 52.9%, respectively; the standard deviation of error for pose component x, pose component y, pose component z and pose component γ are reduced by 52.9%, 62.8%, 51.9% and 58.8%, respectively. The results verify the effectiveness of the proposed method.

    參考文獻
    相似文獻
    引證文獻
引用本文

高國琴,韓瀅.并聯(lián)機器人視覺(jué)盲區末端位姿檢測方法計算機測量與控制[J].,2020,28(9):100-105.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-02-18
  • 最后修改日期:2020-03-18
  • 錄用日期:2020-03-18
  • 在線(xiàn)發(fā)布日期: 2020-09-16
  • 出版日期:
文章二維碼
普格县| 揭东县| 南雄市| 南岸区| 永德县| 朝阳市| 益阳市| 张家口市| 德安县| 诸城市| 北宁市| 湖州市| 东乡县| 景德镇市| 栾川县| 西充县| 桦南县| 綦江县| 宿州市| 疏勒县| 万年县| 四会市| 贵港市| 阆中市| 临洮县| 乐山市| 资源县| 新余市| 延边| 化州市| 桦南县| 望奎县| 绥宁县| 安图县| 当涂县| 昆山市| 石狮市| 大同县| 凭祥市| 靖宇县| 措美县|