国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)的生物激勵神經(jīng)網(wǎng)絡(luò )機器人路徑規劃算法
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué)信息與控制工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金資助項目(51678470)


Robot path planning algorithm based on improved biological-inspired neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統生物激勵神經(jīng)網(wǎng)絡(luò )(BINN)在點(diǎn)對點(diǎn)全局路徑規劃中存在的路徑偏離和路徑非最優(yōu)問(wèn)題,提出了基于路徑修正和無(wú)障礙理想路徑制導的生物激勵神經(jīng)網(wǎng)絡(luò )算法。路徑規劃的初始階段,通過(guò)判斷起始單元外部激勵輸入和起始單元活性值大小決定是否觸發(fā)路徑生成策略,從而實(shí)現初始路徑修正;在生成下一位置單元的算法中結合無(wú)障礙理想路徑的導向,引入實(shí)際路徑單元與無(wú)障礙理想路徑單元間的理想路徑接近率使路徑神經(jīng)元活性值增大,從而實(shí)現路徑優(yōu)化。在靜態(tài)復雜環(huán)境下,分別以三種算法進(jìn)行了對比實(shí)驗。實(shí)驗結果表明,改進(jìn)后的路徑規劃算法相比傳統生物激勵神經(jīng)網(wǎng)絡(luò )算法和基于目標制導的生物激勵算法,不僅解決了路徑規劃初始階段的路徑偏離問(wèn)題,而且使路徑長(cháng)度和路徑轉折次數更低,效率更高。

    Abstract:

    In order to solve the problem of path deviation and non-optimal path in the traditional biological-inspired neural network (BINN) in point-to-point global path planning, BINN based on path modification and ideal barrier-free path guidance was proposed. In the initial stage of path planning, determine whether to trigger the path generation strategy by judging the external stimulus input of the starting unit and the activation value of the starting unit, so as to achieve the initial path modification; combine the guidance of the ideal path without obstacles in the algorithm for generating the next position unit The introduction of the ideal path approach rate between the actual path unit and the barrier-free ideal path unit increases the path neuron activity value, thereby achieving the purpose of optimizing the path. In a static and complex environment, three experiments were carried out for comparison experiments. The experimental results show that the improved path planning algorithm not only solves the problem of path deviation in the initial stage of path planning, but also makes the path length and number of path turns lower than traditional biological inspired neural network algorithms and target-guided biological inspired algorithms. higher efficiency.

    參考文獻
    相似文獻
    引證文獻
引用本文

張秦,段中興.基于改進(jìn)的生物激勵神經(jīng)網(wǎng)絡(luò )機器人路徑規劃算法計算機測量與控制[J].,2020,28(7):204-209.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-12-06
  • 最后修改日期:2019-12-25
  • 錄用日期:2019-12-25
  • 在線(xiàn)發(fā)布日期: 2020-07-14
  • 出版日期:
文章二維碼
石门县| 潮安县| 蓬安县| 慈溪市| 申扎县| 吴桥县| 永州市| 贞丰县| 泸水县| 红安县| 永登县| 平顺县| 从江县| 苍南县| 阳朔县| 武安市| 资兴市| 兴海县| 武义县| 富源县| 万盛区| 广丰县| 望谟县| 尉犁县| 搜索| 江门市| 陆川县| 通榆县| 灵丘县| 丰顺县| 蒙山县| 府谷县| 曲麻莱县| 松滋市| 凤翔县| 清新县| 望江县| 临沧市| 萍乡市| 甘洛县| 遂宁市|