国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于灰色神經(jīng)網(wǎng)絡(luò )的裝備計量預測研究與實(shí)現
DOI:
CSTR:
作者:
作者單位:

國防科技大學(xué) 計算機學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TH707; O175

基金項目:


Research and Implementation of Equipment Metrological Forecasting Based on Grey Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于裝備計量數據歷史樣本數據較少的特點(diǎn),將適合小樣本的灰色理論GM(1,1)模型應用于基于計量數據的裝備狀態(tài)預測,同時(shí)為提高GM(1,1)模型精度,提出了基于RBF神經(jīng)網(wǎng)絡(luò )優(yōu)化GM(1,1)傳統模型的灰色神經(jīng)網(wǎng)絡(luò )模型。裝備計量數據實(shí)例應用分析表明,上述模型均可獲得該裝備計量數據的合理預測值,且相對于GM(1,1)傳統模型,GM(1,1)優(yōu)化模型具有更優(yōu)的模型精度和預測效果,基于MATLAB開(kāi)發(fā)的裝備計量預測軟件,實(shí)現了GM(1,1)傳統及優(yōu)化模型下裝備計量狀態(tài)預測及比較的可視化操作,為裝備計量保障提供了可參考的技術(shù)方案。

    Abstract:

    In order to realize the forecasting of equipment technical status based on metrological data which with less historical sample data, the GM (1,1) model of grey theory which suitable for less sample data was applied. And a grey neural network model which based on GM (1,1) traditional model optimized by RBF neural network was proposed, which in order to improve the accuracy of GM (1,1) model. The application analysis of equipment metrological data shows that the models all can obtain the reasonable forecasting value, and compared with the GM (1,1) traditional model, the GM (1,1) optimization model has better model accuracy and forecasting effect. The software of equipment metrological forecasting which developed by MATLAB, which realized the visualization operation of equipment metrological forecasting and comparison which in GM (1,1) traditional and optimization model, provides a reference technical scheme for equipment metrological support.

    參考文獻
    相似文獻
    引證文獻
引用本文

周東方,王志虎,丁風(fēng)海.基于灰色神經(jīng)網(wǎng)絡(luò )的裝備計量預測研究與實(shí)現計算機測量與控制[J].,2020,28(6):23-27.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-11-15
  • 最后修改日期:2019-12-05
  • 錄用日期:2019-12-05
  • 在線(xiàn)發(fā)布日期: 2020-06-17
  • 出版日期:
文章二維碼
铜梁县| 海盐县| 高唐县| 定日县| 黑河市| 滦平县| 永清县| 泾阳县| 仲巴县| 敦煌市| 大丰市| 安康市| 呼和浩特市| 麦盖提县| 陈巴尔虎旗| 连江县| 即墨市| 菏泽市| 犍为县| 中牟县| 安陆市| 罗源县| 奉新县| 福泉市| 临城县| 株洲县| 南靖县| 阿克苏市| 永和县| 林甸县| 玉环县| 双鸭山市| 巩留县| 布拖县| 邵阳市| 甘谷县| 左贡县| 商都县| 富民县| 同江市| 林口县|