国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于灰色神經(jīng)網(wǎng)絡(luò )的裝備計量預測研究與實(shí)現
DOI:
CSTR:
作者:
作者單位:

國防科技大學(xué) 計算機學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TH707; O175

基金項目:


Research and Implementation of Equipment Metrological Forecasting Based on Grey Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于裝備計量數據歷史樣本數據較少的特點(diǎn),將適合小樣本的灰色理論GM(1,1)模型應用于基于計量數據的裝備狀態(tài)預測,同時(shí)為提高GM(1,1)模型精度,提出了基于RBF神經(jīng)網(wǎng)絡(luò )優(yōu)化GM(1,1)傳統模型的灰色神經(jīng)網(wǎng)絡(luò )模型。裝備計量數據實(shí)例應用分析表明,上述模型均可獲得該裝備計量數據的合理預測值,且相對于GM(1,1)傳統模型,GM(1,1)優(yōu)化模型具有更優(yōu)的模型精度和預測效果,基于MATLAB開(kāi)發(fā)的裝備計量預測軟件,實(shí)現了GM(1,1)傳統及優(yōu)化模型下裝備計量狀態(tài)預測及比較的可視化操作,為裝備計量保障提供了可參考的技術(shù)方案。

    Abstract:

    In order to realize the forecasting of equipment technical status based on metrological data which with less historical sample data, the GM (1,1) model of grey theory which suitable for less sample data was applied. And a grey neural network model which based on GM (1,1) traditional model optimized by RBF neural network was proposed, which in order to improve the accuracy of GM (1,1) model. The application analysis of equipment metrological data shows that the models all can obtain the reasonable forecasting value, and compared with the GM (1,1) traditional model, the GM (1,1) optimization model has better model accuracy and forecasting effect. The software of equipment metrological forecasting which developed by MATLAB, which realized the visualization operation of equipment metrological forecasting and comparison which in GM (1,1) traditional and optimization model, provides a reference technical scheme for equipment metrological support.

    參考文獻
    相似文獻
    引證文獻
引用本文

周東方,王志虎,丁風(fēng)海.基于灰色神經(jīng)網(wǎng)絡(luò )的裝備計量預測研究與實(shí)現計算機測量與控制[J].,2020,28(6):23-27.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-11-15
  • 最后修改日期:2019-12-05
  • 錄用日期:2019-12-05
  • 在線(xiàn)發(fā)布日期: 2020-06-17
  • 出版日期:
文章二維碼
江安县| 浑源县| 荣昌县| 阳信县| 瑞金市| 邓州市| 全州县| 宜丰县| 正定县| 红安县| 平顶山市| 长沙县| 河南省| 阳泉市| 十堰市| 田东县| 宁波市| 新巴尔虎右旗| 伊宁市| 如皋市| 河间市| 西华县| 容城县| 太原市| 海林市| 泰顺县| 天峻县| 盖州市| 大新县| 连山| 平阴县| 启东市| 祁东县| 乌什县| 凤冈县| 芜湖市| 驻马店市| 云梦县| 独山县| 古蔺县| 哈尔滨市|