国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于改進(jìn)粒子群算法的RBF神經(jīng)網(wǎng)絡(luò )磨機負荷預測研究
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué)

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目)


Research on Mill Load Prediction of RBF Neural Network Based on Improved Particle Swarm Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    磨機負荷是評價(jià)磨機運行狀態(tài)和預測磨機行為的重要指標,針對粉磨機磨礦過(guò)程中負荷難以檢測和不能準確判斷負荷狀態(tài)的問(wèn)題,提出了一種基于改進(jìn)型粒子群算法(Improved particle swarm optimization, IPSO)優(yōu)化徑向基神經(jīng)網(wǎng)絡(luò )(Radial Basis Function,RBF)參數的磨機負荷預測模型(IPSO-RBF),使慣性權重因子在迭代過(guò)程中非線(xiàn)性下降,平衡局部搜索能力與全局搜索能力之間的矛盾,該算法能快速準確地找到最優(yōu)解,提高粉磨機磨機負荷的預測精度。通過(guò)水泥廠(chǎng)的實(shí)測數據實(shí)驗對比,結果表明,基于IPSO-RBF模型的預測精度最高,其預測結果與真實(shí)值相比較,均方根誤差(Root Mean Square Error,RMSE)、均方誤差(Mean Square Error,MSE)、平均絕對誤差(Mean Absolute Error,MAE)、平均絕對百分比誤差(Mean Absolute Percentage Error,MAPE)和決定系數(coefficient of determination,)分別為0.210 2、0.044 2、0.161 7、1.778%和0.978 2。

    Abstract:

    Mill load is an important index to evaluate the running state of the mill and predict the behavior of the mill. Aiming at the problem that the load is difficult to detect during the grinding process of the grinding mill and the load state cannot be accurately determined, an improved particle swarm optimization algorithm (IPSO) Optimized the radial load-based neural network (RBF) parameters of the mill load prediction model (IPSO-RBF), so that the inertia weight factor decreases nonlinearly in the iterative process, balancing the local search ability and the global The contradiction between search capabilities, the algorithm can quickly and accurately find the optimal solution, improve the prediction accuracy of the mill mill load. Through the experimental comparison of the measured data of the cement plant, the results show that the prediction accuracy based on the IPSO-RBF model is the highest, and the prediction results are compared with the real values. Root Mean Square Error (RMSE) and mean square error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination () were 0.210 2, 0.044 2, 0.161 7, 1.778%, and 0.978 2, respectively.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙長(cháng)春,趙亮,王博.基于改進(jìn)粒子群算法的RBF神經(jīng)網(wǎng)絡(luò )磨機負荷預測研究計算機測量與控制[J].,2020,28(6):19-22.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-11-01
  • 最后修改日期:2019-11-21
  • 錄用日期:2019-11-21
  • 在線(xiàn)發(fā)布日期: 2020-06-17
  • 出版日期:
文章二維碼
浦城县| 淮阳县| 什邡市| 彝良县| 宜阳县| 高州市| 双鸭山市| 武功县| 东海县| 丹棱县| 连江县| 宣汉县| 邻水| 桦川县| 渭源县| 清水河县| 南通市| 东辽县| 杂多县| 开封县| 邢台县| 广水市| 广宁县| 揭阳市| 海丰县| 黄石市| 邹平县| 柏乡县| 安陆市| 翼城县| 高邑县| 福泉市| 克什克腾旗| 曲松县| 东海县| 壤塘县| 叙永县| 双峰县| 朝阳区| 辉县市| 定襄县|