国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于時(shí)空殘差網(wǎng)絡(luò )的區域客流量預測方法
DOI:
CSTR:
作者:
作者單位:

西安建筑科技大學(xué) 信息與控制工程學(xué)院

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP391.9

基金項目:

國家自然科學(xué)基金(61701388),陜西省自然科學(xué)基礎研究計劃資助項目(2018JM6080),西安市科技局科技創(chuàng )新引導項目(201805033YD11CG17(1), 201805033YD11CG17(2))。


Regional Traffic Prediction Method Based on Spatiotemporal Residual Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對區域客流量波動(dòng)性強、復雜非線(xiàn)性的特征,易受到季節性影響,并且單一神經(jīng)網(wǎng)絡(luò )模型無(wú)法同時(shí)學(xué)習時(shí)間與空間相關(guān)性問(wèn)題,通過(guò)對區域客流量影響因素分析,結合殘差網(wǎng)絡(luò )和全連接網(wǎng)絡(luò ),提出了用于區域客流量預測的改進(jìn)Quad-ResNet模型。Quad-ResNet模型融合了四個(gè)殘差網(wǎng)絡(luò )和一個(gè)全連接網(wǎng)絡(luò ),該模型通過(guò)深層次的卷積學(xué)習空間相關(guān)性,結合四個(gè)殘差網(wǎng)絡(luò )學(xué)習時(shí)間鄰近性、相似性、周期性、趨勢性,使用全連接網(wǎng)絡(luò )學(xué)習季節性影響。將Quad-ResNet模型與LSTM、CNN、ST-ResNet模型在同一數據集上進(jìn)行區域客流量預測對比實(shí)驗,實(shí)驗結果表明,Quad-ResNet模型誤差小于其他對比模型,而且在訓練和預測的操作上明顯比LSTM模型更簡(jiǎn)便,更適用于區域客流量預測。

    Abstract:

    For the characteristics of Regional traffic (Strong volatility, Complex nonlinearity, Susceptible to seasonal effects), as the single neural network model cannot learn temporal and spatial correlation problems simultaneously. By analyzing the influencing factors of regional tourist flow, combining residual networks with fully connected networks. The author proposes an improved Quad-ResNet model for regional tourist traffic forecasting. The Quad-ResNet model integrates 4 residual networks and a fully connected network, in learning spatial correlation through deep convolution, learning time proximity, similarity, periodicity and trend by combining 4 residual networks, also learning seasonal influencing factors by using a fully connected network. Comparing the Quad-ResNet model with the LSTM, CNN, and ST-ResNet models on the same data set for regional tourist traffic forecasting, the experimental results demonstrate that the deviation of Quad-ResNet model is smaller than other models. Moreover, it is obviously easier to train and forecast than the LSTM model, is more suitable for regional tourist traffic forecasting.

    參考文獻
    相似文獻
    引證文獻
引用本文

董麗麗,柳佳歡,費城,張翔.基于時(shí)空殘差網(wǎng)絡(luò )的區域客流量預測方法計算機測量與控制[J].,2020,28(6):170-174.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-10-31
  • 最后修改日期:2019-11-20
  • 錄用日期:2019-11-20
  • 在線(xiàn)發(fā)布日期: 2020-06-17
  • 出版日期:
文章二維碼
扶风县| 襄城县| 句容市| 明溪县| 安庆市| 乡宁县| 哈尔滨市| 郸城县| 临湘市| 台前县| 琼结县| 蓝山县| 柘城县| 瑞安市| 临汾市| 东港市| 仙桃市| 东乡| 泰顺县| 团风县| 隆林| 寻乌县| 怀宁县| 江永县| 巩义市| 盐山县| 泗阳县| 板桥市| 临沭县| 开化县| 那曲县| 聂拉木县| 丽水市| 邵武市| 海阳市| 河津市| 茌平县| 九台市| 松潘县| 小金县| 福海县|