国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于PCA和粒子群優(yōu)化算法的焊點(diǎn)缺陷識別
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


Solder Joint Defect Recognition Based on PCA and Particle Swarm Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對生產(chǎn)線(xiàn)上的表面貼裝技術(shù)(SMT)焊點(diǎn)圖像的特點(diǎn),提出了一種基于PCA和粒子群算法-誤差反向傳播(PSO-BP)神經(jīng)網(wǎng)絡(luò )的焊點(diǎn)缺陷識別方法。首先使用圖像處理技術(shù)和CCD傳感器對PCB焊點(diǎn)圖像進(jìn)行預處理,采用中值濾波、灰度圖像增強、全局閾值法等方法,有效抑制噪聲干擾并提高了圖像對比度,提取出較好的圖像特征。然后運用主成分分析法提取包含焊點(diǎn)86.6%特征信息的5個(gè)主成分,并輸入到經(jīng)粒子群算法改進(jìn)后的BP神經(jīng)網(wǎng)絡(luò )。通過(guò)具體的實(shí)驗分析,結果表明改進(jìn)的BP神經(jīng)網(wǎng)絡(luò )具有較好的識別分類(lèi)效果,能夠對正常、多錫、少錫、漏焊四種不同類(lèi)型的焊點(diǎn)進(jìn)行識別,準確率達93.22%,算法可靠,在實(shí)際生產(chǎn)中能夠有效的提高檢測效率。

    Abstract:

    Aiming at the characteristics of surface mount technology (SMT) solder joint image on the production line, a solder joint defect identification method based on PCA and particle swarm optimization algorithm-error backpropagation (PSO-BP) neural network is proposed. Firstly, image processing technology and CCD sensor are used to preprocess PCB solder joint image. Median filtering, gray image enhancement and global threshold method are used to effectively suppress noise interference and improve image contrast, and extract better image features. Then, the principal components analysis method is used to extract the five principal components including the 86.6% characteristic information of the solder joints, and input into the BP neural network improved by the particle swarm optimization algorithm. Through specific experimental analysis, the results show that the improved BP neural network has better recognition and classification effect, and can identify four different types of solder joints of normal, multi-tin, less tin and miss welding, with an accuracy rate of 93.22%. Reliable, it can effectively improve the detection efficiency in actual production.

    參考文獻
    相似文獻
    引證文獻
引用本文

廖坤銳,陳衛兵,楊雪.基于PCA和粒子群優(yōu)化算法的焊點(diǎn)缺陷識別計算機測量與控制[J].,2020,28(5):190-194.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-10-16
  • 最后修改日期:2019-10-28
  • 錄用日期:2019-10-29
  • 在線(xiàn)發(fā)布日期: 2020-05-25
  • 出版日期:
文章二維碼
乐至县| 抚顺县| 曲沃县| 花莲市| 康乐县| 都匀市| 塔河县| 周口市| 共和县| 镇安县| 瓦房店市| 盐城市| 凉山| 嘉义县| 桐庐县| 海门市| 沂源县| 临夏市| 林芝县| 土默特左旗| 灵武市| 乌拉特中旗| 澄迈县| 南安市| 凤冈县| 湘乡市| 新宁县| 沅江市| 五寨县| 松滋市| 伊金霍洛旗| 沙雅县| 兰考县| 水城县| 太谷县| 秦皇岛市| 晋中市| 伊通| 木兰县| 禹州市| 淳化县|