国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于深度學(xué)習及GPU計算的航天器故障檢測技術(shù)
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家自然科學(xué)基金(61603262),國家自然科學(xué)基金(61403071),遼寧省自然科學(xué)基金(20180550418),沈陽(yáng)工學(xué)院i5智能制造研究所基金(i5201701),遼寧“百千萬(wàn)人才工程”培養經(jīng)費資助


Spacecraft Fault Detection Technology Based on Deep Learning and GPU Computing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    由于航天器在高溫、高壓等惡劣環(huán)境中工作,采用傳統故障檢測方法自主性相對較差,缺少對故障特征的分析,導致檢測精準度較低。提出了基于深度學(xué)習及GPU計算的航天器故障檢測技術(shù),依據航天器故障信號特征分析與檢測原理,在GPU計算技術(shù)支持下,獲取GPU圖像,并在深度置信網(wǎng)絡(luò )模型中引入該計算方法。根據構建的深度置信網(wǎng)絡(luò )模型,預測軸承故障位置,經(jīng)過(guò)GPU計算技術(shù)下提取的故障特征用于深度置信網(wǎng)絡(luò )故障預測基本數據,將原始進(jìn)行歸一化處理,分析航天器軸承故障特征,并在不同參數支持下,利用深度學(xué)習算法自動(dòng)確定網(wǎng)絡(luò )關(guān)鍵參數,由此識別軸承故障,并學(xué)習故障特征,實(shí)現航天器故障檢測。由實(shí)驗結果可知,該技術(shù)檢測精準度最高可達到98%,具有較強魯棒性。

    Abstract:

    Because the spacecraft works in the harsh environment such as high temperature and high pressure, the autonomy of traditional fault detection methods is relatively poor, and the lack of analysis of fault characteristics leads to low detection accuracy. A spacecraft fault detection technology based on deep learning and GPU calculation is proposed. According to the principle of analysis and detection of spacecraft fault signal characteristics, the GPU image is obtained with the support of GPU computing technology, and the calculation method is introduced into the depth confidence network model. According to the built deep confidence network model, the fault location of bearings is predicted. The fault features extracted by GPU computing technology are used for the basic data of deep confidence network fault prediction. The original data are normalized and the fault characteristics of spacecraft bearings are analyzed. With the support of different parameters, the deep learning algorithm is used to automatically confirm the fault location of bearings. By defining the key parameters of the network, bearing faults can be identified, and fault features can be learned to realize spacecraft fault detection. The experimental results show that the detection accuracy of this technology can reach 98%, and it has strong robustness.

    參考文獻
    相似文獻
    引證文獻
引用本文

田林琳.基于深度學(xué)習及GPU計算的航天器故障檢測技術(shù)計算機測量與控制[J].,2020,28(5):1-4.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-10-09
  • 最后修改日期:2019-10-09
  • 錄用日期:2019-10-23
  • 在線(xiàn)發(fā)布日期: 2020-05-25
  • 出版日期:
文章二維碼
安塞县| 无棣县| 东乌珠穆沁旗| 镇江市| 阿克| 衡南县| 晴隆县| 鄄城县| 隆回县| 乾安县| 安徽省| 宁远县| 陆良县| 达州市| 台北县| 沾化县| 靖州| 同德县| 永泰县| 老河口市| 故城县| 闻喜县| 商水县| 芷江| 昭觉县| 苗栗县| 双峰县| 德州市| 衡水市| 新巴尔虎右旗| 新巴尔虎左旗| 专栏| 施秉县| 道真| 杂多县| 和平区| 连城县| 黄大仙区| 鞍山市| 西畴县| 诸城市|