国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于堆疊稀疏自編碼神經(jīng)網(wǎng)絡(luò )的航空發(fā)動(dòng)機剩余壽命預測方法研究
DOI:
CSTR:
作者:
作者單位:

中航飛機股份有限公司

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

V233.7

基金項目:


ResearchonPredictionMethodofAeroengineResidualLifeBasedonStackedSparseAutomaticEncoder
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    航空發(fā)動(dòng)機是飛行器的核心動(dòng)力系統,工作環(huán)境惡劣,對其進(jìn)行狀態(tài)監測和壽命預測是保障飛行器安全可靠運行的重要技術(shù)手段。本文研究一種基于堆疊稀疏自編碼神經(jīng)網(wǎng)絡(luò )的航空發(fā)動(dòng)機剩余壽命預測方法,首先將多個(gè)自編碼網(wǎng)絡(luò )連接構成深度堆疊自編碼網(wǎng)絡(luò ),選取發(fā)動(dòng)機的狀態(tài)數據作為網(wǎng)絡(luò )的訓練輸入,使網(wǎng)絡(luò )逐層智能提取數據間的分布式規則,從而構建發(fā)動(dòng)機退化的堆疊自編碼學(xué)習模型。通過(guò)采用BP神經(jīng)網(wǎng)絡(luò )對發(fā)動(dòng)機剩余壽命區間進(jìn)行分類(lèi),作為發(fā)動(dòng)機剩余壽命預測的結果。通過(guò)使用PHM2008挑戰賽中發(fā)動(dòng)機退化數據對本文研究方法進(jìn)行了驗證,結果驗證了堆疊自編碼網(wǎng)絡(luò )深度學(xué)習方法對航空發(fā)動(dòng)機剩余壽命預測的有效性。

    Abstract:

    Aeroengine is the core power system of the aircraft. The working environment is harsh. The state monitoring and life prediction are important technical means to ensure the safe and reliable operation of the aircraft. This paper proposes a method for predicting the remaining life of aeroengine based on stacked sparse autoencoder. Firstly, multiple self-encoding networks are connected to form a deep stack self-encoding network, and the state data of the engine is selected as the training input of the network to make the network layer-by-layer intelligent extraction. Distributed rules between data to build an engine-degraded stacked self-encoding learning model. The BP residual neural network is used to classify the remaining life of the engine as a result of the prediction of the remaining life of the engine. The proposed method is validated by using the engine degradation data in the PHM2008 Challenge. The results verify the effectiveness of the stacked self-encoding network deep learning method for the prediction of remaining life of aeroengine.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉康,肖娜.基于堆疊稀疏自編碼神經(jīng)網(wǎng)絡(luò )的航空發(fā)動(dòng)機剩余壽命預測方法研究計算機測量與控制[J].,2019,27(12):29-33.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-04-24
  • 最后修改日期:2019-05-14
  • 錄用日期:2019-05-15
  • 在線(xiàn)發(fā)布日期: 2019-12-26
  • 出版日期:
文章二維碼
左云县| 中牟县| 平谷区| 泸溪县| 房山区| 大石桥市| 昌宁县| 思茅市| 彭水| 江口县| 京山县| 巨鹿县| 无为县| 莒南县| 张家界市| 汪清县| 油尖旺区| 定日县| 霍林郭勒市| 湘潭市| 赣榆县| 公主岭市| 喀喇沁旗| 洪湖市| 禄丰县| 潼关县| 太康县| 凌源市| 贵德县| 通山县| 新建县| 稻城县| 永吉县| 泗水县| 阳西县| 江永县| 沙洋县| 集安市| 信宜市| 腾冲县| 马山县|