国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于輕量級卷積神經(jīng)網(wǎng)絡(luò )的實(shí)時(shí)缺陷檢測方法研究
DOI:
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

TP3

基金項目:

國家自然科學(xué)基金項目(面上項目,重點(diǎn)項目,重大項目)


Research On Real-time Defect Detection Method Based On Lightweight Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    應用機器視覺(jué)實(shí)現磁片表面缺陷的自動(dòng)檢測可以提高生產(chǎn)效率、降低生產(chǎn)成本。深度卷積神經(jīng)網(wǎng)絡(luò )具有高精度的分類(lèi)性能,尤其在圖像識別方面有顯著(zhù)的優(yōu)點(diǎn)。但是目前提出的深度神經(jīng)網(wǎng)絡(luò )模型,由于參數量和計算量的巨大,在工業(yè)生產(chǎn)流水線(xiàn)上不能滿(mǎn)足實(shí)時(shí)檢測的需求。針對這個(gè)問(wèn)題,基于深度可分離卷積和通道混洗,提出了一種輕量級高效低延時(shí)的卷積神經(jīng)網(wǎng)絡(luò )架構MagnetNets。為了評估MagnetNets網(wǎng)絡(luò )模型的性能,將MagnetNets網(wǎng)絡(luò )模型與MobileNets、ShuffleNet、Xception、MobileNetV2在公開(kāi)數據集ImageNet中做了對比實(shí)驗。然后將MagnetNets網(wǎng)絡(luò )模型應用在磁片缺陷檢測系統中進(jìn)行缺陷檢測。實(shí)驗結果表明,提出的網(wǎng)絡(luò )架構顯著(zhù)地減少參數數量,具有良好的性能。同時(shí)在磁片缺陷檢測系統中減少了延時(shí),提高檢測速度,缺陷檢測識別率達到了97.3%。

    Abstract:

    The application of machine vision to the automatic detection of surface defects on magnetic sheets can increase production efficiency and reduce production costs. Deep convolutional neural networks have high-precision classification performance, especially in image recognition. However, the deep neural network model proposed so far cannot meet the requirements of real-time detection in the industrial production line due to the huge amount of parameters and computation. To solve this problem, based on deep separable convolution and channel shuffling, we proposed a lightweight, high-efficiency and low-latency convolutional neural network architecture called MagnetNets.In order to evaluate the performance of the MagnetNets network model, we compared it with MobileNets, ShuffleNet, Xception, and MobileNetV2 in the public dataset ImageNet.And then the MagnetNets network model is applied to the defect detection system for magnetic defect detection.The experimental results show that the proposed network architecture significantly reduces the number of parameters and has good performance,At the same time, the delay is reduced and the detection speed is improved in the disk defect detection system and the defect detection recognition rate reaches 97.3%.

    參考文獻
    相似文獻
    引證文獻
引用本文

姚明海,楊圳.基于輕量級卷積神經(jīng)網(wǎng)絡(luò )的實(shí)時(shí)缺陷檢測方法研究計算機測量與控制[J].,2019,27(6):22-25.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-11-12
  • 最后修改日期:2018-12-07
  • 錄用日期:2018-12-07
  • 在線(xiàn)發(fā)布日期: 2019-06-12
  • 出版日期:
文章二維碼
启东市| 巴塘县| 枣阳市| 邮箱| 东乡县| 石门县| 凤山县| 确山县| 巴东县| 沾化县| 重庆市| 桐乡市| 滨海县| 东丽区| 腾冲县| 沙湾县| 望奎县| 迭部县| 平塘县| 盐津县| 临颍县| 蓬安县| 旌德县| 呼和浩特市| 肃北| 扬州市| 夏邑县| 武川县| 土默特右旗| 乌兰察布市| 桑植县| 尼木县| 南皮县| 江西省| 泸水县| 西盟| 邮箱| 加查县| 白山市| 政和县| 康乐县|