国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于A(yíng)daboost算法的水質(zhì)組合預測方法研究
DOI:
CSTR:
作者:
作者單位:

北京工商大學(xué)計算機與信息工程學(xué)院,北京工商大學(xué)計算機與信息工程學(xué)院,北京工商大學(xué)計算機與信息工程學(xué)院,北京工商大學(xué)計算機與信息工程學(xué)院,北京市水務(wù)局辦公室

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:

國家水體污染控制與治理重大專(zhuān)項(2017ZX07104002);國家自然科學(xué)基金(61703008);北京市教委科技計劃重點(diǎn)項目(KZ201510011011);北京市市屬高校創(chuàng )新能力提升計劃項目(PXM2014_014213_000033)


Research on Water Quality Combination Forecasting Method Based on Adaboost Algorithm
Author:
Affiliation:

Beijing Technology and Business University School of Computer and Information Engineering,,Beijing Technology and Business University School of Computer and Information Engineering,Beijing Technology and Business University School of Computer and Information Engineering,Office of Beijing Water Authority

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    水質(zhì)預測是水環(huán)境污染防治的重要內容,針對傳統水質(zhì)預測方法精度低、收斂速度慢等問(wèn)題,研究首先選取Symlets和Daubechies小波系作為小波函數,對原始數據進(jìn)行去噪處理并對比,再結合RBF、Elman神經(jīng)網(wǎng)絡(luò )以及支持向量機各自?xún)?yōu)點(diǎn),通過(guò)不同算法優(yōu)化三種預測模型,提出基于A(yíng)daboost算法將優(yōu)化后的RBF、Elman神經(jīng)網(wǎng)絡(luò )以及支持向量機相結合的組合預測方法。以北海為對象進(jìn)行仿真實(shí)驗,驗證基于A(yíng)daboost的溶解氧組合預測方法的有效性,并分別與單一模型的預測結果進(jìn)行對比,結果表明該方法相比于傳統的單一模型預測精度得到了提高,為水質(zhì)精準預測提供了一種新思路。

    Abstract:

    Water quality prediction is an important content of water pollution prevention and control, aiming at the problems such as low accuracy and slow convergence of traditional water quality prediction methods. In this paper, the Symlets and Daubechies wavelet systems are selected as the wavelet function, and the original data are denoised and compared. Combined with the advantages of RBF, Elman neural network and support vector machines, three different prediction models are optimized by different algorithms, a combined forecasting method based on Adaboost algorithm is proposed to optimize RBF, Elman neural network and support vector machine. Taking Beihai as the object to carry on the simulation experiment, the effectiveness of the method based on Adaboost"s dissolved oxygen combination is verified and compared with the prediction results of the single model. The results show that the proposed method is improved compared with the traditional single model, which provides a new idea for the accurate prediction of water quality.

    參考文獻
    相似文獻
    引證文獻
引用本文

康 鐸,許繼平,趙峙堯,王小藝,劉松波.基于A(yíng)daboost算法的水質(zhì)組合預測方法研究計算機測量與控制[J].,2018,26(8):41-45.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-12-19
  • 最后修改日期:2018-01-24
  • 錄用日期:2018-01-25
  • 在線(xiàn)發(fā)布日期: 2018-09-04
  • 出版日期:
文章二維碼
西和县| 喜德县| 徐汇区| 聊城市| 永兴县| 襄城县| 会理县| 基隆市| 沙坪坝区| 清水河县| 平顶山市| 北京市| 灵武市| 古浪县| 南丰县| 西充县| 蓬安县| 绍兴市| 雷州市| 南溪县| 泽库县| 康马县| 故城县| 兴和县| 越西县| 长宁县| 长沙县| 雅安市| 全南县| 新民市| 新津县| 盐亭县| 太和县| 六盘水市| 焦作市| 中宁县| 宜良县| 金湖县| 扬中市| 阳春市| 广汉市|