国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于遺傳神經(jīng)網(wǎng)絡(luò )的耙吸挖泥船泥泵轉速預測
CSTR:
作者:
作者單位:

(1.江蘇科技大學(xué) 電子信息學(xué)院,江蘇 鎮江 212003;2.江蘇科技大學(xué) 海洋裝備研究院,江蘇 鎮江 212003)

作者簡(jiǎn)介:

曹點(diǎn)點(diǎn)(1990),男,江蘇徐州人,碩士研究生,主要從事船舶自動(dòng)化方向的研究。 蘇 貞(1985),男,山東濟寧人,碩士研究生導師,主要從事船舶自動(dòng)化方向的研究。 [FQ)]

通訊作者:

中圖分類(lèi)號:

基金項目:

江蘇高校高技術(shù)船舶協(xié)同創(chuàng )新中心資助項目(HZ2016011)。


Pump Speed Prediction for Hopper Dredger Based on Genetic Neural Network
Author:
Affiliation:

(1.School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003,China;2.Marine equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    耙吸挖泥船泥泵管線(xiàn)模型是一個(gè)復雜的、非線(xiàn)性的動(dòng)態(tài)模型,影響模型準確性的參數較多;為了根據當前施工條件和流量的優(yōu)化值準確地預測轉速,為施工人員提供參考,提高疏浚效率,采用了遺傳算法改進(jìn)的BP神經(jīng)網(wǎng)絡(luò )對泥泵轉速進(jìn)行預測;首先,遺傳算法對BP神經(jīng)網(wǎng)絡(luò )的初始權值和閾值進(jìn)行優(yōu)化;然后,BP神經(jīng)網(wǎng)絡(luò )根據優(yōu)化值對網(wǎng)絡(luò )進(jìn)行訓練并對轉速進(jìn)行預測;為了驗證該方法的有效性,將遺傳BP神經(jīng)網(wǎng)絡(luò )的預測輸出和實(shí)測泥泵轉速進(jìn)行對比;仿真結果表明:遺傳BP神經(jīng)網(wǎng)絡(luò )具有很強的非線(xiàn)性擬合能力和全局搜索能力,能夠準確地預測泥泵轉速;該預測輸出可為施工人員提供參考,以便改變泥泵轉速,提高疏浚效率。

    Abstract:

    Hopper dredger's pump pipeline model is a complex and nonlinear dynamic model, and there are lots of parameters that can affect the model's accuracy. In order to accurately predict the next moment's pump speed and improve the dredging efficiency based on current construction conditions and the optimal flow rate, the genetic BP neural network prediction model is proposed. First, genetic algorithm was used to optimize the initial weights and thresholds of BP neural network, and then the BP neural network is trained according to the optimal value. In order to verify the validity of the method, the genetic BP neural network and the real pump data were compared. The simulation results show that the genetic BP neural network has a good fitting ability and good global search ability. Genetic BP neural network can accurately predict the speed and provide recommendations for the construction personnel, who can adjust pump speed and improve the efficiency of dredging.

    參考文獻
    相似文獻
    引證文獻
引用本文

曹點(diǎn)點(diǎn),蘇貞,孫健.基于遺傳神經(jīng)網(wǎng)絡(luò )的耙吸挖泥船泥泵轉速預測計算機測量與控制[J].,2017,25(10):27-29, 34.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-04-02
  • 最后修改日期:2017-04-14
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2017-11-09
  • 出版日期:
文章二維碼
林甸县| 江安县| 海宁市| 全州县| 江孜县| 宾阳县| 友谊县| 大方县| 池州市| 南昌市| 衡阳县| 沙雅县| 临城县| 万山特区| 秦皇岛市| 龙泉市| 铅山县| 离岛区| 楚雄市| 湖州市| 泸西县| 镇原县| 宁城县| 塘沽区| 文山县| 锦州市| 通海县| 铜陵市| 淮滨县| 乌兰浩特市| 蚌埠市| 云霄县| 仁怀市| 木里| 绵竹市| 进贤县| 论坛| 信宜市| 星子县| 沅陵县| 光山县|