国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

18650型鋰電池荷電狀態(tài)的估計
DOI:
CSTR:
作者:
作者單位:

軍械工程學(xué)院 電工電子實(shí)驗中心,軍械工程學(xué)院 電工電子實(shí)驗中心

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號:

基金項目:


The SOC estimation of 18650 lithium battery
Author:
Affiliation:

Electrical and electronic experiment center,Ordnance Engineering College,Shijiazhuang Hebei 050003 China,Electrical and electronic experiment center,Ordnance Engineering College,Shijiazhuang Hebei 050003 China

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    鋰電池狀態(tài)的準確估計,能夠延長(cháng)電池的使用壽命和減少安全事故的發(fā)生。為提高BP神經(jīng)網(wǎng)絡(luò )估計鋰電池荷電狀態(tài)的精度,提出一種使遺傳粒子群算法有目的性的優(yōu)化BP神經(jīng)網(wǎng)絡(luò )初始權值的改進(jìn)方法。該算法引入K均值算法優(yōu)化遺傳粒子群算法初始粒子分布的隨機性帶來(lái)的誤差問(wèn)題,尋找BP神經(jīng)網(wǎng)絡(luò )算法初始權值的權重分配與輸出誤差的關(guān)系,在遺傳粒子群算法隨機產(chǎn)生的粒子群中進(jìn)行最優(yōu)粒子群選優(yōu),以降低誤差。通過(guò)對采集到的18650型鋰電池的充放電數據和未改進(jìn)遺傳粒子群算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò )訓練產(chǎn)生的200組BP神經(jīng)網(wǎng)絡(luò )的初始權值數據的研究分析,得到具有鋰電池特性的BP神經(jīng)網(wǎng)絡(luò )的初始權值特征公式。并用MATLAB和FPGA聯(lián)合仿真驗證了改進(jìn)BP神經(jīng)網(wǎng)絡(luò )方法的可行性。該方法也優(yōu)化了遺傳粒子群算法,減小了初值不確定帶來(lái)的誤差。

    Abstract:

    The accurate estimation of the lithium battery’s state can prolong the service life of the battery and reduce the occurrence of safety accidents. In order to improve the accuracy of back propagation (BP) neural network to estimate the state of charged (SOC), an improved method is proposed to optimize the initial weights of BP neural networks by using genetic particle swarm optimization algorithm (GA-PSO). The K-mean algorithm is introduced to optimize the error caused by the randomness of the initial particle distribution in the genetic particle swarm algorithm, and seeks the relationship between the initial weights and the output error of the BP neural network algorithm, the optimal particle swarm optimization is carried out in the particle swarm generated by the genetic particle swarm optimization algorithm, which can reduce the error. According to the analysis of the charging and discharging data of the 18650 lithium battery and the 200 sets of data is produced by the BP neural network training that is optimized by the original genetic particle swarm optimization algorithm. Then the initial weight characteristic formula of BP neural network with lithium battery characteristics is obtained. And the feasibility of the improved BP neural network method is verified by the cosimulation of MATLAB and FPGA .The method also optimizes the GA-PSO, and reduces the error caused by the uncertainty of initial values.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊冬進(jìn),婁建安.18650型鋰電池荷電狀態(tài)的估計計算機測量與控制[J].,2018,26(4):268-271.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-08-11
  • 最后修改日期:2017-08-11
  • 錄用日期:2017-08-22
  • 在線(xiàn)發(fā)布日期: 2018-04-23
  • 出版日期:
文章二維碼
滦南县| 华阴市| 磐石市| 车险| 大渡口区| 涪陵区| 印江| 武定县| 南川市| 洛浦县| 谢通门县| 滨海县| 体育| 庐江县| 交城县| 秭归县| 巴彦淖尔市| 永顺县| 正蓝旗| 沭阳县| 汕头市| 长武县| 天门市| 灌阳县| 黔南| 桓台县| 菏泽市| 饶河县| 合川市| 新干县| 高淳县| 喀什市| 右玉县| 萨迦县| 浦县| 石城县| 鲁山县| 台山市| 海原县| 保康县| 探索|