国产欧美精品一区二区,中文字幕专区在线亚洲,国产精品美女网站在线观看,艾秋果冻传媒2021精品,在线免费一区二区,久久久久久青草大香综合精品,日韩美aaa特级毛片,欧美成人精品午夜免费影视

基于灰關(guān)聯(lián)和靈敏度的BP網(wǎng)絡(luò )隱含層結構優(yōu)化
DOI:
CSTR:
作者:
作者單位:

(太原理工大學(xué) 信息工程學(xué)院,太原 030024)

作者簡(jiǎn)介:

張曉明(1989-),男,河北昌黎人,研究生, 主要從事復雜系統建模與控制方向的研究。[FQ)]

通訊作者:

中圖分類(lèi)號:

TP181

基金項目:

國家自然科學(xué)基金(51277127)。


Hidden Layer Structure Optimization of BP Network Based on Grey Incidence Degree and Sensitivity Degree[HS)]
Author:
Affiliation:

(College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在優(yōu)化BP神經(jīng)網(wǎng)絡(luò )隱含層結構時(shí),采用灰關(guān)聯(lián)剪枝法是每次刪除灰關(guān)聯(lián)度小于灰關(guān)聯(lián)閾值的隱節點(diǎn),該方法學(xué)習時(shí)間短,但由于灰關(guān)聯(lián)閾值的選取具有一定的主觀(guān)性,可能會(huì )導致誤刪節點(diǎn)或不能完全刪除冗余節點(diǎn);而采用靈敏度剪枝法是每次只刪除靈敏度最小的一個(gè)隱節點(diǎn),故學(xué)習時(shí)間較長(cháng);因此,提出一種基于灰關(guān)聯(lián)-靈敏度的BP神經(jīng)網(wǎng)絡(luò )隱含層結構調整算法;首先在網(wǎng)絡(luò )前期學(xué)習過(guò)程中,采用灰關(guān)聯(lián)法對隱含層節點(diǎn)進(jìn)行“粗刪”,直到剩余隱節點(diǎn)的灰關(guān)聯(lián)度都大于動(dòng)態(tài)灰關(guān)聯(lián)閾值,然后在網(wǎng)絡(luò )后期學(xué)習過(guò)程中,采用靈敏度剪枝法對隱含層節點(diǎn)進(jìn)行“細刪”,直到刪除后的學(xué)習誤差增大,則保留該節點(diǎn),并結束學(xué)習;文章將結構優(yōu)化后的神經(jīng)網(wǎng)絡(luò )應用于風(fēng)電功率預測,仿真結果表明,該方法在滿(mǎn)足學(xué)習誤差要求的同時(shí),不僅精簡(jiǎn)了神經(jīng)網(wǎng)絡(luò )結構,而且避免了灰關(guān)聯(lián)剪枝法中灰關(guān)聯(lián)閾值精確選取困難所帶來(lái)的問(wèn)題。

    Abstract:

    When using grey incidence method to optimize the hidden layer of BP neural network structure, this method takes a short learning time to delete the hidden redundant nodes whose grey incidence degree is less than grey incidence threshold. But the selection of grey incidence threshold has certain subjectivity, which may result in deleting useful nodes by mistake or being unable to delete redundant nodes completely. When using sensitivity pruning method, only the node with the minimum sensitivity will be deleted each time, therefore it takes a long learning time. In view of this, this paper presents a BP structure optimization method based on the grey incidence and the sensitivity degree. At the early stage of the network learning, this paper uses grey incidence method to delete the redundant nodes rapidly, until the grey incidence degrees of the remaining hidden nodes are greater than dynamic grey incidence threshold value. Then in the later learning process of the network, it uses sensitivity pruning method to delete the hidden nodes precisely, until the learning error increases after the deletion of the node. Then keep the node and stop the learning. In this paper, the neural network with the optimized structure is applied to wind power prediction. The simulation results show that this method can meet the requests for forecasting error. And it can not only simplify the structure of neural network, but also solve the problem brought by grey incidence threshold’s precise determination of grey incidence method.

    參考文獻
    相似文獻
    引證文獻
引用本文

張曉明,王芳,金玉雪,劉曉洋.基于灰關(guān)聯(lián)和靈敏度的BP網(wǎng)絡(luò )隱含層結構優(yōu)化計算機測量與控制[J].,2014,22(9):3055-3057,3080.

復制
分享
文章指標
  • 點(diǎn)擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2014-04-20
  • 最后修改日期:2014-05-24
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2014-12-18
  • 出版日期:
文章二維碼
盘山县| 永善县| 城市| 仁怀市| 镇平县| 思南县| 泰顺县| 开江县| 冕宁县| 宁化县| 张家界市| 丽江市| 绥德县| 浦东新区| 苏尼特左旗| 天镇县| 武鸣县| 镇江市| 九龙坡区| 无极县| 潮安县| 镇巴县| 乾安县| 峡江县| 乌拉特中旗| 汝州市| 攀枝花市| 保康县| 丹寨县| 越西县| 光山县| 仲巴县| 泰顺县| 垫江县| 广南县| 富民县| 利川市| 玉田县| 陈巴尔虎旗| 师宗县| 竹北市|